土木工程 |
|
|
|
|
基于复合材料理论的混凝土内多离子扩散模型 |
田壮( ),肖官衍,金伟良*( ),夏晋,程新 |
浙江大学 建筑工程学院,浙江 杭州 310058 |
|
Diffusion model of multi ions in concrete based on composite theory |
Zhuang TIAN( ),Guan-yan XIAO,Wei-liang JIN*( ),Jin XIA,Xin CHENG |
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
田壮,肖官衍,金伟良,夏晋,程新. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401.
Zhuang TIAN,Guan-yan XIAO,Wei-liang JIN,Jin XIA,Xin CHENG. Diffusion model of multi ions in concrete based on composite theory. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1393-1401.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.014
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1393
|
1 |
金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011.
|
2 |
王涛, 朴香兰, 朱慎林. 高等传递过程原理 [M]. 北京: 化学工业出版社, 2005.
|
3 |
NOSKOV A V, LILIN S A, PARFENYUK V I Simulation of ion mass transfer processes with allowance for the concentration dependence of diffusion coefficients[J]. Russian Chemical Bulletin, 2006, 55 (4): 661- 665
doi: 10.1007/s11172-006-0309-9
|
4 |
孙国文, 孙伟, 张云升, 等 骨料对氯离子在水泥基复合材料中扩散系数的影响[J]. 硅酸盐学报, 2011, 39 (4): 662- 669 SUN Guo-wen, SUN Wei, ZHANG Yun-sheng, et al Influence of aggregates on the chloride ion diffusion coefficient in cement-based composite materials[J]. Journal of Chinese Ceramic Society, 2011, 39 (4): 662- 669
|
5 |
刘清风 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报, 2018, 46 (8): 1074- 1080 LIU Qing-feng Multi-phase modeling of concrete at meso-micro scale based on multi-species transport[J]. Journal of Chinese Ceramic Society, 2018, 46 (8): 1074- 1080
|
6 |
LI L, PAGE C L Finite element modeling of chloride removal from concrete by an electrochemical method[J]. Corrosion Science, 2000, 42 (12): 2145- 2165
doi: 10.1016/S0010-938X(00)00044-5
|
7 |
XIA J, LI L Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39 (Supple.I): 51- 59
|
8 |
THOMAS M DA, SCOTT A, BREMNER T, et al Performance of slag concrete in marine environment[J]. ACI Materials Journal, 2008, 105 (6): 628- 634
|
9 |
BENTZ E C, THOMAS M. Life-365 service life prediction model and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides [R]. Toronto: University of Toronto, 2012.
|
10 |
KHATRI R P Characteristic service life for concrete exposed to marine environments[J]. Cement and Concrete Research, 2004, 34 (5): 745- 752
doi: 10.1016/S0008-8846(03)00086-3
|
11 |
ERDOGDU S, KONDRATOVA I L, BREMNER T W Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements[J]. Cement and Concrete Research, 2004, 34 (4): 603- 609
doi: 10.1016/j.cemconres.2003.09.024
|
12 |
RIDING K A, THOMAS M D, FOLLIARD K J Apparent diffusivity model for concrete containing supplementary cementitious materials[J]. ACI Materials Journal, 2013, 110 (6): 705- 714
|
13 |
CHUEH C C, BERTEI A, PHAROAH J G, et al Effective conductivity in random porous media with convex and non-convex porosity[J]. International Journal of Heat and Mass Transfer, 2014, 71: 183- 188
doi: 10.1016/j.ijheatmasstransfer.2013.12.041
|
14 |
HASHIN Z, SHTRIKMAN S A variational approach to the theory of the effective magnetic permeability of multiphase materials[J]. Journal of Applied Physics, 1962, 33 (10): 3125- 3131
doi: 10.1063/1.1728579
|
15 |
JEFFREY D J Conduction through a random suspension of spheres[J]. Proceedings of the Royal Society of London Series A, 1973, 335 (1602): 355- 367
|
16 |
MALLET P, GUERIN C A, SENTENAC A Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy[J]. Physical Review B, 2005, 72 (1): 14201- 14205
doi: 10.1103/PhysRevB.72.014201
|
17 |
TIEDJE E W, GUO P Modeling the influence of particulate geometry on the thermal conductivity of composites[J]. Journal of Materials Science, 2014, 49 (16): 5586- 5597
doi: 10.1007/s10853-014-8268-2
|
18 |
CARÉ S Influence of aggregates on chloride diffusion coefficient into mortar[J]. Cement and Concrete Research, 2003, 33 (7): 1021- 1028
doi: 10.1016/S0008-8846(03)00009-7
|
19 |
HASHIN Z Thin interphase/imperfect interface in conduction[J]. Journal of Applied Physics, 2001, 89 (4): 2261- 2267
doi: 10.1063/1.1337936
|
20 |
LU X Application of the Nernst-Einstein equation to concrete[J]. Cement and Concrete Research, 1997, 27 (2): 293- 302
doi: 10.1016/S0008-8846(96)00200-1
|
21 |
傅献彩. 物理化学 [M]. 5版. 北京: 科学出版社, 2005.
|
22 |
SNYDER K A, FENG X, KEEN B D, et al Estimating the electrical conductivity of cement paste pore solutions from OH−, K+ and Na+ concentrations [J]. Cement and Concrete Research, 2003, 33 (6): 793- 798
doi: 10.1016/S0008-8846(02)01068-2
|
23 |
NIELSEN J M, ADAMSON A W, COBBLE J W The self-diffusion coefficients of the ions in aqueous sodium chloride and sodium sulfate at 25 ℃[J]. Journal of the American Chemical Society, 1952, 74 (2): 446- 451
doi: 10.1021/ja01122a050
|
24 |
MCBAIN J W, DAWSON M The diffusion of potassium chloride in aqueous solution[J]. Proceedings of the Royal Society of London Series A, 1935, 148 (863): 32- 39
|
25 |
LOBO V, RIBEIRO A, VERISSIMO L Diffusion coefficients in aqueous solutions of potassium chloride at high and low concentrations[J]. Journal of Molecular Liquids, 1998, 78 (1-2): 139- 149
doi: 10.1016/S0167-7322(98)00088-9
|
26 |
CRC handbook of chemistry and physics [M]. 89th ed. Boca Raton: CRC Press, 2009.
|
27 |
MCLACHLAN D S, BLASZKIEWICZ M, NEWNHAM R E Electrical resistivity of composites[J]. Journal of the American Ceramic Society, 1990, 73 (8): 2187- 2203
doi: 10.1111/j.1151-2916.1990.tb07576.x
|
28 |
OH B H, JANG S Y Prediction of diffusivity of concrete based on simple analytic equations[J]. Cement Concrete Research, 2004, 34 (3): 463- 480
doi: 10.1016/j.cemconres.2003.08.026
|
29 |
ISICHENKO M B Percolation, statistical topography, and transport in random media[J]. Review of Modern Physics, 1992, 64 (4): 961- 1043
doi: 10.1103/RevModPhys.64.961
|
30 |
LUO X, QU M, SCHUBERT D W Electrical conductivity and fiber orientation of poly (methyl methacrylate)/carbon fiber composite sheets with various thickness[J]. Polymer Composites, 2020, 42 (2): 548- 558
|
31 |
LIN J, CHEN H Effect of particle morphologies on the percolation of particulate porous media: a study of superballs[J]. Powder Technology, 2018, 335: 388- 400
doi: 10.1016/j.powtec.2018.05.015
|
32 |
LI M, CHEN H, LIN J, et al Effects of the pore shape polydispersity on the percolation threshold and diffusivity of porous composites: theoretical and numerical studies[J]. Powder Technology, 2021, 386: 382- 393
doi: 10.1016/j.powtec.2021.03.055
|
33 |
XU W, JIA M, ZHU Z, et al n-Phase micromechanical framework for the conductivity and elastic modulus of particulate composites: design to microencapsulated phase change materials (MPCMs)-cementitious composites[J]. Materials and Design, 2018, 145: 108- 115
doi: 10.1016/j.matdes.2018.02.065
|
34 |
CHRISTENSEN B J, COVERDALE T, OLSON R A, et al Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application[J]. Journal of the American Ceramic Society, 1994, 77 (11): 2789- 2804
doi: 10.1111/j.1151-2916.1994.tb04507.x
|
35 |
POWERS T C. Physical properties of cement paste [C]// Proceedings of the 4th International Conference on the Chemistry of Cement. Washington, DC: Cementand Concrete Association, 1960: 577–613.
|
36 |
WALLER V, DELARRARD F, ROUSSEL P. Modelling the temperature rise in massive HPC structures. [C]// 4th International Symposium on Utilization of High-Strength/High-Performance Concrete. Paris: RILEM, 1996: 415-421.
|
37 |
GARBOCZI E J, BENTZ D P Computer simulation of the diffusivity of cement-based materials[J]. Journal of Materials Science, 1992, 27 (8): 2083- 2092
doi: 10.1007/BF01117921
|
38 |
BENTZ D P, GARBOCZI E J. Computer modelling of interfacial transition zone: microstructure and properties [C]// RILEM Report 20. Cachan: RILEM, 1999: 349-385.
|
39 |
BOURDETTE B, RINGOT E, OLLIVIER J P Modelling of the transition zone porosity[J]. Cement Concrete Research, 1995, 25 (4): 741- 751
doi: 10.1016/0008-8846(95)00064-J
|
40 |
JIANG J, SUN G, WANG C Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials[J]. Construction and Building Materials, 2013, 39: 134- 138
doi: 10.1016/j.conbuildmat.2012.05.023
|
41 |
YANG C C, SU K J Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar[J]. Cement Concrete Research, 2002, 32 (10): 1559- 1565
doi: 10.1016/S0008-8846(02)00832-3
|
42 |
ZHENG J J, WONG H S, BUENFELD N R Assessing the influence of ITZ on the steady-state chloride diffusivity of concrete using a numerical model[J]. Cement Concrete Research, 2009, 39 (9): 805- 813
doi: 10.1016/j.cemconres.2009.06.002
|
43 |
应敬伟, 肖建庄 模型再生混凝土氯离子非线性扩散细观仿真[J]. 建筑材料学报, 2013, 16 (5): 863- 868 YING Jing-wei, XIAO Jian-zhuang Meso-level simulation of chloride nonlinear diffusion in modeled recycled aggregate concrete[J]. Journal of Building Materials, 2013, 16 (5): 863- 868
doi: 10.3969/j.issn.1007-9629.2013.05.022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|