Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 367-379    DOI: 10.3785/j.issn.1008-973X.2023.02.016
土木与交通工程     
基于热裂纹演化的玻化微珠保温混凝土渗透性能分析
李明厚1(),SELYUTINA Nina 2,SMIRNOV Ivan 2,张祥1,李贝贝1,刘元珍1,张玉1,*()
1. 太原理工大学 土木工程学院,山西 太原 030024
2. Saint Petersburg State University,St. Petersburg 199034,Russia
Permeability analysis of glazed hollow beads insulation concrete based on thermal crack evolution
Ming-hou LI1(),Nina SELYUTINA2,Ivan SMIRNOV2,Xiang ZHANG1,Bei-bei LI1,Yuan-zhen LIU1,Yu ZHANG1,*()
1. College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Saint Petersburg State University, St. Petersburg 199034, Russia
 全文: PDF(3778 KB)   HTML
摘要:

为了改善火灾后混凝土结构耐久性退化问题,利用玻化微珠(GHB)的高热稳定性对混凝土耐高温性能进行提升,通过电通量法对高温后玻化微珠保温混凝土(GIC)的抗氯离子侵蚀性能进行测试,并结合混凝土试件热裂纹演化特征对其抗氯离子侵蚀性能劣化规律进行分析. 结果表明:GHB的掺加显著改善了高温后混凝土抗氯离子渗透能力退化问题,与同强度等级的普通混凝土(NC)和硅灰混凝土(SFC)相比,掺加GHB后混凝土的电通量分别降低了约54.15%、32.69%. 结合各试件热裂纹演化规律,认为这归因于GHB和硅灰对混凝土密实性的提高,以及GHB对混凝土抗高温损伤造成的积极影响. 在此基础上,通过考虑热裂纹演化特征、GHB和硅灰的影响,建立了高温环境氯离子渗透性预测模型.

关键词: 玻化微珠混凝土氯离子侵蚀热裂纹预测模型    
Abstract:

The high thermal stability of glazed hollow bead (GHB) was used to improve the high temperature resistance of concrete, in order to improve the durability degradation of concrete structures after fire. The anti-chloride ion penetration of glazed hollow beads insulation concrete (GIC) exposed to high temperature was tested through the electric flux method. Meanwhile, combined with the thermal crack evolution characteristics, the deterioration law of its resistance to chloride ion corrosion was analyzed. Results showed that the application of GHB significantly improved the degradation of the chloride ion penetration resistance of concrete after high temperature exposure. Compared with normal concrete (NC) and silica fume concrete (SFC) of the same strength grade, the electric flux of concrete with GHB after high temperature exposure was reduced by about 54.15% and 32.69%, respectively. Combined with the thermal cracks evolution characteristic of concrete, it was believed that this was attributed to the strengthening effect of GHB and silica fume on the compactness of concrete, and the positive contribution of GHB to thermal damage resistance of concrete. On this basis, the influences of thermal crack evolution, GHB and silica fume, were further considered, and a prediction model of chloride ion permeability in high temperature environment was finally established.

Key words: glazed hollow bead    concrete    chloride ion corrosion    thermal crack    predictive model
收稿日期: 2022-06-01 出版日期: 2023-02-28
CLC:  TB 332  
基金资助: 国家自然科学基金国际合作与交流项目(52111530039);Russian Foundation for Basic Research (21-51-53008);住房和城乡建设部科技计划资助项目(2021-K-046);山西省研究生教育创新资助项目(2021Y234)
通讯作者: 张玉     E-mail: liminghou0648@link.tyut.edu.cn;zhangyu03@tyut.edu.cn
作者简介: 李明厚(1997—),男,硕士生,从事混凝土材料研究. orcid.org/0000-0001-6302-5254. E-mail: liminghou0648@link.tyut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李明厚
SELYUTINA Nina
SMIRNOV Ivan
张祥
李贝贝
刘元珍
张玉

引用本文:

李明厚,SELYUTINA Nina ,SMIRNOV Ivan ,张祥,李贝贝,刘元珍,张玉. 基于热裂纹演化的玻化微珠保温混凝土渗透性能分析[J]. 浙江大学学报(工学版), 2023, 57(2): 367-379.

Ming-hou LI,Nina SELYUTINA,Ivan SMIRNOV,Xiang ZHANG,Bei-bei LI,Yuan-zhen LIU,Yu ZHANG. Permeability analysis of glazed hollow beads insulation concrete based on thermal crack evolution. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 367-379.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.02.016        https://www.zjujournals.com/eng/CN/Y2023/V57/I2/367

胶凝材料 $ \rho $/(g·cm?3) $ {a_{\text{s}}} $/(m2·kg?1) $ {H_{7{\text{d}}}} $/% $ {R_{\text{c}}} $/MPa
水泥 3.09 318 ? 48.3
硅灰 2.35 15400 112 ?
表 1  胶凝材料基本性能
骨料 $ {\rho _{\text{L}}} $/(g·cm?3) $ {\delta _{\text{j}}} $/% ${w_{\text{c} } }$/% $ {\delta _{\text{a}}} $/% ${w _{ {\text{wa,24h} } } }$/% ${w _{ {\text{cl} } } }$/%
1.48 6.2 0.65 18 3.70 0.016
碎石 1.45 4.7 0.47 8.9 1.10 ?
表 2  骨料性能
图 1  玻化微珠形貌图
材料 $ {\rho _{\text{L}}} $/
(kg·m?3)
p/
kPa
$ \lambda $/
(W·m?1·K?1)
${w _{ {\text{wa,24h} } } }$/
%
${w _{\text{1} } }$/
%
${w_{\text{2} } }$/
%
GHB 130 209 0.0412 207 92 96
表 3  玻化微珠材料性能
混凝土
编号
$ {m_{\text{g}}} $/
kg
$ {m_{\text{s}}} $/
kg
$ {m_{\text{c}}} $/
kg
$ {m_{{\text{GHB}}}} $/
kg
${w _{ {\text{SF} } } }$/
%
${w _{\text{a} } }$/
%
$ w/c $ $ {f_{{\text{cu,28d}}}} $/
MPa
评级
等级
GIC 1033 580 458 132 6.9 2.50 0.40 55.78 C55
SFC 1070 730 447 0 6.9 0.26 0.36 58.03 C55
NC 1202 515 488 0 0 0.10 0.36 56.94 C55
表 4  混凝土配合比
图 2  电通量测试装置
图 3  氯离子渗透深度的计算示意图
图 4  高温后试样的质量损失率
图 5  高温损伤现象
图 6  高温后氯离子在混凝土中的渗透深度
图 7  温度对混凝土电通量的影响
θ/℃ GIC SFC NC
$ Q $/C 渗透
等级
$ Q $/C 渗透
等级
$ Q $/C 渗透
等级
20 97 可忽略 224 非常低 600 非常低
100 104 非常低 346 非常低 1867
200 1221 2148 中等 3506 中等
300 2773 中等 3078 中等 4372
400 3579 中等 3957 中等 4843
≥500 4103 4410 5055
表 5  试样渗透等级分类
$ \theta $/℃ $ D $/(10?11 m2·s)
${w _{ {\text{PF} } } }$=0 ${w _{ {\text{PF} } } }$=0.6 ${w _{ {\text{PF} } } }$=1.2 ${w _{ {\text{PF} } } }$=1.8
400 2.35 2.41 2.38 3.65
600 7.30 7.33 7.31 7.38
表 6  高温后聚丙烯纤维混凝土氯离子扩散系数[25]
图 8  不同温度下加气混凝土与普通混凝土抗压强度[13]
图 9  混凝土试件热致裂纹提取方法
图 10  混凝土试件热致裂纹演化过程
图 11  比裂纹长度及裂纹分数随温度变化特征
图 12  比裂纹长度、裂纹分数与温度的关系
图 13  高温劣化系数与渗透性能关联特征
图 14  高温后混凝土渗透性劣化机理
图 15  GHB、SF影响因子随温度变化特征
图 16  高温后样品孔径分布曲线
$ \theta $/℃ NC SFC GIC
${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta }$/% ${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta }$/% ${Q_{\rm{e}}}$/C $ {Q_{\text{p}}} $/C ${\varDelta}$/%
20 600 1092 82.18 224 285 26.81 97 105 7.28
100 1867 1092 41.49 346 393 13.52 104 144 38.89
200 3506 3425 2.31 2148 1812 15.62 1221 1029 15.68
300 4372 4487 2.62 3078 3220 4.61 2773 2905 4.75
400 4843 4903 1.24 3957 4069 2.82 3579 3729 4.19
500 5055 5034 0.42 4410 4337 1.66 4103 3978 3.05
表 7  电通量的计算值与预测值对比结果
1 HAY R, DUNG N T, LESIMPLE A, et al Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperatures[J]. Cement and Concrete Composites, 2021, 118: 103955
doi: 10.1016/j.cemconcomp.2021.103955
2 SHUMUYE E D, ZHAO J, WANG Z Effect of fire exposure on physico-mechanical and microstructural properties of concrete containing high volume slag cement[J]. Construction and Building Materials, 2019, 213: 447- 458
doi: 10.1016/j.conbuildmat.2019.04.079
3 HERTZ K D Limits of spalling of fire-exposed concrete[J]. Fire Safety Journal, 2003, 38 (2): 103- 116
doi: 10.1016/S0379-7112(02)00051-6
4 JIN H, LIU J, JIANG Z, et al Influence of the rainfall intensity on the chloride ion distribution in concrete with different levels of initial water saturation[J]. Construction and Building Materials, 2021, 281: 122561
doi: 10.1016/j.conbuildmat.2021.122561
5 王海龙, 俞秋佳, 孙晓燕, 等 高温作用后混凝土损伤与耐久性能评价[J]. 江苏大学学报:自然科学版, 2014, 35 (2): 238- 242
WANG Hai-long, YU Qiu-jia, SUN Xiao-yan, et al Durability and damage evaluation of concrete subjected to high temperature[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35 (2): 238- 242
6 姜福香, 于奎峰, 赵铁军, 等 高温后混凝土耐久性能试验研究[J]. 四川建筑科学研究, 2010, 36 (2): 32- 34
JIANG Fu-xiang, YU Kui-feng, ZHAO Tie-jun, et al Experimental study on durability of concrete after exposure to high temperature[J]. Sichuan Building Science, 2010, 36 (2): 32- 34
doi: 10.3969/j.issn.1008-1933.2010.02.008
7 PERSSON B Fire resistance of self-compacting concrete, SCC[J]. Materials and Structures, 2004, 37 (9): 575- 584
doi: 10.1007/BF02483286
8 HEZHEV T A, ZHURTOV A V, TSIPINOV A S, et al Fire resistant fibre reinforced vermiculite concrete with volcanic application[J]. Magazine of Civil Engineering, 2018, 4 (80): 181- 194
9 MOHAMMADHOSSEINI H, ALRSHOUDI F, TAHIR M M, et al Performance evaluation of novel prepacked aggregate concrete reinforced with waste polypropylene fibers at elevated temperatures[J]. Construction and Building Materials, 2020, 259: 120418
doi: 10.1016/j.conbuildmat.2020.120418
10 NARAYANAN N, RAMAMURTHY K Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22 (5): 321- 329
doi: 10.1016/S0958-9465(00)00016-0
11 SANCAK E, SARI Y D, SIMSEK O Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer[J]. Cement and Concrete Composites, 2008, 30 (8): 715- 721
doi: 10.1016/j.cemconcomp.2008.01.004
12 张文潇. 纤维素纤维混凝土耐久性、高温抗爆裂及徐变特性[D]. 南京: 东南大学, 2015.
ZHANG Wen-xiao. Durability, resistance to spalling after high temperature and creep characteristics of cellulose fiber reinforced concrete[D]. Nanjing: Southeast University, 2015.
13 HOLAN J, NOVAK J, MULLER P, et al Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures[J]. Construction and Building Materials, 2020, 248: 118662
doi: 10.1016/j.conbuildmat.2020.118662
14 孙华琦, 徐博, 元成方 高温作用后聚丙烯纤维混凝土氯离子渗透性能研究[J]. 混凝土, 2016, (6): 31- 34
SUN Hua-qi, XU Bo, YUAN Cheng-fang Research on chloride ion permeability of polypropylene fiber reinforced concrete after high temperature[J]. Concrete, 2016, (6): 31- 34
doi: 10.3969/j.issn.1002-3550.2016.06.009
15 LI B, ZHANG Y, SELYUTINA N, et al Thermally-induced mechanical degradation analysis of recycled aggregate concrete mixed with glazed hollow beads[J]. Construction and Building Materials, 2021, 301: 124350
doi: 10.1016/j.conbuildmat.2021.124350
16 DU S, ZHANG Y, ZHANG J, et al Study on pore characteristics of recycled aggregate concrete mixed with glazed hollow beads at high temperatures based on 3-D reconstruction of computed tomography images[J]. Construction and Building Materials, 2022, 323: 126564
doi: 10.1016/j.conbuildmat.2022.126564
17 中国国家标准化管理委员会. 通用硅酸盐水泥: GB 175-2007[S]. 北京: 中国标准出版社, 2007.
18 中国国家标准化管理委员会. 砂浆和混凝土用硅灰: GB/T 27690-2011[S]. 北京: 中国标准出版社, 2011.
19 中国国家标准化管理委员会. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009[S]. 北京: 中国标准出版社, 2009.
20 ASTM Committee on Standards. Standard test method for electrical indication of concrete ability to resist chloride ion penetration: ASTM C1202[S]. West Conshohocken: ASTM International, 1994.
21 FLORES-ALES V, ALDUCIN-OCHOA J M, MARTIN-DEL-RIO J J, et al Physical-mechanical behaviour and transformations at high temperature in a cement mortar with waste glass as aggregate[J]. Journal of Building Engineering, 2020, 29: 101158
doi: 10.1016/j.jobe.2019.101158
22 朋改非, 王金羽, CHAN YIN NIN SAMMY, 等 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报, 2009, 1 (1): 76- 81
PENG Gai-fei, WANG Jin-yu, CHAN Y N S, et al Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science and Technology, 2009, 1 (1): 76- 81
doi: 10.3969/j.issn.1674-7070.2009.01.012
23 FLORES-ALES V, MARTIN-DEL-RIO J J, ALDUCIN-OCHOA J M, et al Rehydration on high temperature-mortars based on recycled glass as aggregate[J]. Journal of Cleaner Production, 2020, 275: 124139
doi: 10.1016/j.jclepro.2020.124139
24 AL-ZAHRANI M M, AL-DULAIJAN S U, IBRAHIM M, et al Effect of waterproofing coatings on steel reinforcement corrosion and physical properties of concrete[J]. Cement and Concrete Composites, 2002, 24 (1): 127- 137
doi: 10.1016/S0958-9465(01)00033-6
25 王静. 聚丙烯纤维混凝土高温性能与高温后氯离子扩散性能试验研究[D]. 郑州: 郑州大学, 2014.
WANG Jing. Experimental study on chloride ion erosion of polypropylene-fiber concrete subjected to high temperature[D]. Zhengzhou: Zhengzhou University, 2014.
26 杨钱荣 混凝土渗透性及引气作用对耐久性的影响[J]. 同济大学学报: 自然科学版, 2009, 37 (6): 744- 748
YANG Qian-rong Effect of permeability of concrete and air entrainment on durability of concrete[J]. Journal of Tongji University: Natural Science, 2009, 37 (6): 744- 748
27 ZHOU C, LI K, PANG X Geometry of crack network and its impact on transport properties of concrete[J]. Cement and Concrete Research, 2012, 42 (9): 1261- 1272
doi: 10.1016/j.cemconres.2012.05.017
28 LITOROWICZ A Identification and quantification of cracks in concrete by optical fluorescent microscopy[J]. Cement and Concrete Research, 2006, 36 (8): 1508- 1515
doi: 10.1016/j.cemconres.2006.05.011
29 LI Y. Material properties and explosive spalling of ultra-high performance concrete in fire[D]. Singapore: Nanyang Technological University, 2018.
30 KALIFA P, MENNETEAU F D, QUENARD D Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30 (12): 1915- 1927
doi: 10.1016/S0008-8846(00)00384-7
31 BAIANT Z P. Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete [C]// International Workshop on Fire Performance of High-strength Concrete, NIST. Gaithersburg: [s.n.], 1997: 155-164.
32 DOUSTI A, RASHETNIA R, AHMADI B, et al Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite[J]. Construction and Building Materials, 2013, 49: 393- 399
doi: 10.1016/j.conbuildmat.2013.08.086
33 ZHAO L, WANG W, LI Z, et al Microstructure and pore fractal dimensions of recycled thermal insulation concrete[J]. Materials Testing, 2015, 57 (4): 349- 359
doi: 10.3139/120.110713
34 罗盛. 玻化微珠保温混凝土晋城凤凰城19#楼项目配合比试验及耐久性的研究[D]. 太原: 太原理工大学, 2012.
LUO Sheng. Research on mix ratio test and durability of thermal insulation glazed hollow bead concrete for Jingcheng phoenix town 19# project[D]. Taiyuan: Taiyuan University of Technology, 2012.
[1] 戴理朝,曹威,易善昌,王磊. 基于WPT-SVD和GA-BPNN的混凝土结构损伤识别[J]. 浙江大学学报(工学版), 2023, 57(1): 100-110.
[2] 鲁海波,张广泰,刘诗拓,李雪藩,韩霞. 盐渍土环境下聚丙烯纤维混凝土柱抗震性能[J]. 浙江大学学报(工学版), 2023, 57(1): 111-121.
[3] 张敏,邓明科,智奥龙,宋诗飞,陈晖. 纤维织物增强高延性混凝土加固RC梁的受弯性能[J]. 浙江大学学报(工学版), 2022, 56(9): 1693-1703.
[4] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[5] 林晓青,应雨轩,余泓,李晓东,严建华. 流化床垃圾焚烧炉烟气停留时间计算及预测[J]. 浙江大学学报(工学版), 2022, 56(8): 1578-1587.
[6] 赵爽,王奎华,吴君涛. 水平循环荷载下砂土中斜单桩累积变形特性[J]. 浙江大学学报(工学版), 2022, 56(7): 1310-1319.
[7] 黄一文,蒋楠,周传波,李海波,罗学东,姚颖康. 内壁腐蚀混凝土管道爆破动力失效机制[J]. 浙江大学学报(工学版), 2022, 56(7): 1342-1352.
[8] 于军琪,杨思远,赵安军,高之坤. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报(工学版), 2022, 56(6): 1220-1231.
[9] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[10] 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.
[11] 田威,高芳芳,贺礼. 高温后碳纳米管混凝土力学性能及细观结构变化[J]. 浙江大学学报(工学版), 2022, 56(11): 2280-2289.
[12] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[13] 杜永潇,卫军,孙晓立. 预应力混凝土梁自振频率的疲劳演变[J]. 浙江大学学报(工学版), 2022, 56(10): 2007-2018.
[14] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[15] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.