Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 988-996    DOI: 10.3785/j.issn.1008-973X.2023.05.015
土木与交通工程     
大跨钢-混凝土组合楼盖的优化设计
吴一凡1,2(),潘文豪1,3,4,*(),罗尧治1,4
1. 浙江大学空间结构研究中心,浙江 杭州 310058
2. 浙江大学平衡建筑研究中心,浙江 杭州 310028
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
4. 浙江省空间结构重点实验室,浙江 杭州 310058
Optimal design of long span steel-concrete composite floor system
Yi-fan WU1,2(),Wen-hao PAN1,3,4,*(),Yao-zhi LUO1,4
1. Space Structure Research Center of Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China
4. Key Laboratory of Space Structures of Zhejiang Province, Hangzhou 310058, China
 全文: PDF(1380 KB)   HTML
摘要:

针对大跨度钢-混凝土组合楼盖的经济适用工况和优化方向,以重要参数为基础,对大跨钢-混凝土组合楼盖的优化设计问题进行研究. 在优化分析时,以组合楼盖的经济等效用钢量为目标函数,变量包括钢梁截面尺寸、钢梁间距和混凝土翼板厚度等8个参数,约束条件服从塑性设计理论、规范规定和工程经验. 在不同跨度和可变荷载下,利用广义简约梯度(GRG)算法求解获得经济等效用钢量最小的组合梁截面. 根据优化结果,跨度小于60 m、可变荷载小于6 kN/m2的组合楼盖能够有效地发挥组合结构的组合作用,具有较好的经济效益. 对于传统组合楼盖经济适用性不强的超大跨楼盖,从提高腹板承载效率的角度,可以使用波形钢腹板组合楼盖体系,考虑张弦梁受力高效的优点提出新型弦支组合楼盖体系.

关键词: 钢-混凝土组合楼盖优化设计大跨结构经济等效用钢量弦支组合楼盖广义简约梯度法    
Abstract:

An optimal design problem of long span steel-concrete composite floor system was investigated based on important parameters to aim at the economical and applicable conditions and optimizing orientations of long span steel-concrete composite floor. The objective function was set as economical equivalent steel consumption, and the variables contained eight parameters including dimensions of the steel section, intermediate distance between steel sections and thickness of concrete slab. The objective function was constrained to the plastic theory, standards and construction experience. The generalized reduced gradient method (GRG) was used to generate optimal sections with minimum economical equivalent steel consumption under different spans and live loads. According to the optimization results, the composite floor within a span of 60 m and a variable load of 6 kN/m2 could efficiently facilitate the composite effect of composite structure and has good economic benefits. As for super-long span composite floor when the traditional I-section floor system is not economically suitable, the composite floor with corrugated web is recommended for improving the bearing efficiency of steel web. A new cable-supported composite floor system was proposed based on the cable-supported beam for its high efficiency in mechanism.

Key words: steel-concrete floor system    optimal design    long span structure    economical equivalent steel consumption    cable-supported composite floor system    generalized reduced gradient (GRG)
收稿日期: 2022-04-29 出版日期: 2023-05-09
CLC:  TU 398.9  
基金资助: 浙江省基础公益研究计划资助项目(LQ21E080020);国家自然科学基金资助项目(52108181);浙江大学平衡建筑研究中心科研项目(2021-KYY-512102-0016)
通讯作者: 潘文豪     E-mail: wuyifann@zju.edu.cn;pan_wh@zju.edu.cn
作者简介: 吴一凡(1998—),男,硕士生,从事组合结构研究. orcid.org/0000-0002-0025-7346. E-mail: wuyifann@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴一凡
潘文豪
罗尧治

引用本文:

吴一凡,潘文豪,罗尧治. 大跨钢-混凝土组合楼盖的优化设计[J]. 浙江大学学报(工学版), 2023, 57(5): 988-996.

Yi-fan WU,Wen-hao PAN,Yao-zhi LUO. Optimal design of long span steel-concrete composite floor system. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 988-996.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/988

图 1  组合楼盖优化模型示意图
图 2  组合梁计算截面示意图
图 3  组合楼盖的经济等效用钢量图
图 4  组合楼盖经济等效用钢量等值线图
图 5  组合楼盖经济等效用钢量变化趋势
图 6  优化截面腹板面积与钢梁总面积比
图 7  优化截面塑性中和轴位置图
图 8  组合楼盖承受荷载占比
图 9  波形钢腹板组合梁
图 10  张弦梁结构的受力概念分析
图 11  弦支钢-混凝土组合梁及其截面形式示意图
1 聂建国, 孙彤, 温凌燕, 等 某会展中心大跨交叉钢-混凝土组合梁系楼盖设计[J]. 建筑结构学报, 2004, 25 (6): 123- 125
NIE Jian-guo, SUN Tong, WEN Ling-yan, et al Design of a long-span two-way steel-concrete composite beam floor system for a conference exhibition center[J]. Journal of Building Structures, 2004, 25 (6): 123- 125
doi: 10.3321/j.issn:1000-6869.2004.06.019
2 聂建国, 陶慕轩, 黄远, 等 钢-混凝土组合结构体系研究新进展[J]. 建筑结构学报, 2010, 31 (6): 71- 80
NIE Jian-guo, TAO Mu-xuan, HUANG Yuan, et al Research advances of steel -concrete composite structural systems[J]. Journal of Building Structures, 2010, 31 (6): 71- 80
3 聂建国, 卜凡民 单、双向钢-混凝土组合楼盖对比分析及设计建议[J]. 建筑结构, 2011, 41 (1): 1- 5
NIE Jian-guo, BU Fan-min Comparative analysis and design suggestion of one-way and two-way steel-concrete composite floor[J]. Building Structure, 2011, 41 (1): 1- 5
doi: 10.19701/j.jzjg.2011.01.001
4 NIE J G, MA X W, WEN L Y Experimental and numerical investigation of steel-concrete composite waffle slab behavior[J]. Journal of Structural Engineering, 2015, 141 (11): 04015024
doi: 10.1061/(ASCE)ST.1943-541X.0001268
5 GUO Y T, TAO M X, NIE X, et al Rigidity and moment distribution of steel-concrete composite waffle floor systems considering the spatial effect[J]. Engineering Structures, 2017, 143: 498- 510
doi: 10.1016/j.engstruct.2017.04.042
6 胡岚, 马克俭 U形钢板-混凝土高强螺栓连接组合空腹夹层板楼盖结构研究与应用[J]. 建筑结构学报, 2012, 33 (7): 61- 69
HU Lan, MA Ke-jian Research and application of U-shaped steel plate-concrete composite open-web sandwich slab structure with high strength bolts[J]. Journal of Building Structures, 2012, 33 (7): 61- 69
doi: 10.14006/j.jzjgxb.2012.07.007
7 尚洪坤, 马克俭, 魏艳辉, 等 大跨度装配整体式H型钢空间钢网格楼盖结构设计[J]. 建筑结构, 2018, 48 (7): 9- 13
SHANG Hong-kun, MA Ke-jian, WEI Yan-hui, et al Structural design of large-span monolithic precast H-shape steel spatial grid plate[J]. Building Structure, 2018, 48 (7): 9- 13
doi: 10.19701/j.jzjg.2018.07.002
8 李莉, 马克俭, 陈志鹏 正六边形多层大跨度公共建筑的混凝土蜂窝型空腹夹层板楼盖结构研究[J]. 建筑结构, 2018, 48 (11): 51- 56
LI Li, MA Ke-jian, CHEN Zhi-peng Research on concrete honeycomb open-web sandwich plate structure in hexagonal[J]. Building Structure, 2018, 48 (11): 51- 56
9 HATEFI H, KARAMODIN A, BAYGI S The cost optimization of a composite metal floor deck by harmony search metaheuristic algorithm[J]. Iran University of Science and Technology, 2018, 8 (1): 101- 111
10 ERDAL F, TUNCA O, DOĞAN E Optimum design of composite corrugated web beams using hunting search algorithm[J]. International Journal of Engineering and Applied Sciences, 2017, 9 (2): 156- 168
doi: 10.24107/ijeas.323633
11 KRAVANJA S, KLANŠEK U Cost optimization of composite floors[J]. High Performance Structures and Materials IV, 2008, 97: 109
12 SENOUCI A B, Al-ANSARI M S Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software, 2009, 40 (11): 1112- 1118
doi: 10.1016/j.advengsoft.2009.06.001
13 KAVEH A, MASOUDI M S Cost optimization of a composite floor system using ant colony system[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering, 2012, 36 (C2): 139
14 KOROUZHDEH T, ESKANDARI-NADDAF H, GHAROUNI-NIK M An improved ant colony model for cost optimization of composite beams[J]. Applied Artificial Intelligence, 2017, 31 (1): 44- 63
15 POITRAS G, LEFRANÇOIS G, CORMIER G Optimization of steel floor systems using particle swarm optimization[J]. Journal of Constructional Steel Research, 2011, 67 (8): 1225- 1231
doi: 10.1016/j.jcsr.2011.02.016
16 KAVEH A, AHANGARAN M Discrete cost optimization of composite floor system using social harmony search model[J]. Applied Soft Computing, 2012, 12 (1): 372- 381
doi: 10.1016/j.asoc.2011.08.035
17 EBID A M Optimum cross section and longitudinal profile for unstiffened fully composite steel beams[J]. Future Engineering Journal, 2021, 2 (1): 2
18 KRAVANJA S, ŠILIH S Optimization based comparison between composite I beams and composite trusses[J]. Journal of Constructional Steel Research, 2003, 59 (5): 609- 625
doi: 10.1016/S0143-974X(02)00045-7
19 KLANŠEK U, KRAVANJA S Cost estimation, optimization and competitiveness of different composite floor systems—part 1: self-manufacturing cost estimation of composite and steel structures[J]. Journal of Constructional Steel Research, 2006, 62 (5): 434- 448
doi: 10.1016/j.jcsr.2005.08.005
20 KLANŠEK U, KRAVANJA S Cost estimation, optimization and competitiveness of different composite floor systems—Part 2: optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses[J]. Journal of Constructional Steel Research, 2006, 62 (5): 449- 462
doi: 10.1016/j.jcsr.2005.08.006
21 KRAVANJA S, ŽULA T, KLANŠEK U Multi-parametric MINLP optimization study of a composite I beam floor system[J]. Engineering Structures, 2017, 130: 316- 335
doi: 10.1016/j.engstruct.2016.09.012
22 GB 50017—2017, 钢结构设计标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2017: 154–156.
23 GB 50010—2010, 混凝土结构设计规范[S]. 北京: 中华人民共和国住房和城乡建设部, 2015: 30.
24 中国混凝土与水泥制品协会, 商混价格周报: 全国重点城市商品混凝土市场价格周报(10月25日-10月31日)[EB/OL]. [2021-11-01]. https://www.ccpa.com.cn/site/content/7560.html.
25 国家统计局, 政府信息公开: 2021年10月下旬流通领域重要生产资料市场价格变动情况[EB/OL]. [2021-11-04]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202111/t20211105_1824118.html.
26 聂建国, 刘明, 叶列平. 钢-混凝土组合结构[M]. 北京: 中国建筑工业出版社, 2005: 24–46.
NIE Jian-guo, LIU Ming, YE Lie-ping. Steel-concrete composite structure [M]. Beijing: China Architecture and Building Press, 2005: 24–46.
27 聂建国, 陶慕轩, 吴丽丽, 等 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45 (6): 110- 122
NIE Jian-guo, TAO Mu-xuan, WU Li-li, et al Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45 (6): 110- 122
doi: 10.15951/j.tmgcxb.2012.06.003
28 聂建国, 樊健生 广义组合结构及其发展展望[J]. 建筑结构学报, 2006, 27 (6): 1- 8
NIE Jian-guo, FAN Jian-sheng The development and prospect of generalized composite structure[J]. Journal of Building Strutures, 2006, 27 (6): 1- 8
29 RUIZ-TERAN A M, APARICIO A C Two new types of bridges: under-deck cable-stayed bridges and combined cable-stayed bridges—the state of the art[J]. Canadian Journal of Civil Engineering, 2007, 34 (8): 1003- 1015
doi: 10.1139/l07-017
30 赵基达, 梁存之 张弦梁结构的分析与力学性能研究[J]. 建筑科学, 2015, 31 (1): 1- 6
ZHAO Ji-da, LIANG Cun-zhi Structural analysis and mechanical behavior research of beam string structures[J]. Building Science, 2015, 31 (1): 1- 6
doi: 10.13614/j.cnki.11-1962/tu.2015.01.001
31 SAITOH M, OKADA A The role of string in hybrid string structure[J]. Engineering Structures, 1999, 21 (8): 756- 769
doi: 10.1016/S0141-0296(98)00029-7
32 董石麟, 罗尧治, 赵阳. 新型空间结构分析、设计与施工[M]. 北京: 人民交通出版社, 2006: 506–531.
DONG Shi-lin, LUO Yao-zhi, ZHAO Yang. Analysis design and construction of new space structures [M]. Beijing: China Communications Press, 2006: 506–531.
[1] 陈淑琴,虞昂,明焱,丁德,杨毅. 夏热冬冷地区近零能耗住宅可再生能源设计[J]. 浙江大学学报(工学版), 2023, 57(4): 795-804.
[2] 季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.
[3] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[4] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[5] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[6] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[7] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[8] 张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
[9] 刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.
[10] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[11] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[12] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[13] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[14] 田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 2016, 50(5): 934-940.
[15] 赵琼,童水光,钟崴,葛俊旭. 基于GA-FEA的门座起重机变幅机构优化设计[J]. 浙江大学学报(工学版), 2015, 49(5): 880-886.