Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (4): 795-804    DOI: 10.3785/j.issn.1008-973X.2023.04.017
交通工程、土木工程     
夏热冬冷地区近零能耗住宅可再生能源设计
陈淑琴1,2(),虞昂1,明焱1,*(),丁德3,2,杨毅3,2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江大学平衡建筑研究中心,浙江 杭州 310012
3. 浙江大学建筑设计研究院有限公司,浙江 杭州 310063
Design of renewable energy systems for near-zero energy residence in hot summer and cold winter zone
Shu-qin CHEN1,2(),Ang YU1,Yan MING1,*(),De DING3,2,Yi YANG3,2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310012, China
3. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310063, China
 全文: PDF(1963 KB)   HTML
摘要:

针对目前研究中没有对近零能耗住宅光伏系统、光热系统及其储能设备同时进行优化配置,且未考虑光伏板、集热板安装位置问题,以夏热冬冷地区的典型近零能耗住宅建筑为例,提出可再生能源系统的优化设计方法. 分别以年均系统花费、建筑能耗综合值和光伏本地消纳率为目标,利用粒子群优化算法,对光伏板安装位置、装机容量,太阳能集热板安装位置、装机容量及蓄电池容量进行优化配置. 研究结果表明,若分别以年均系统花费最小和建筑能耗综合值最小为最优目标,与传统方案相比年均系统花费和建筑能耗综合值可分别降低15.8%和降低87.7%. 若以年均系统花费最小和建筑能耗综合值最小为目标,则与传统方案相比建筑能耗综合值可以降低65.8%,但是年均系统花费会增加4.3%. 若以光伏本地消纳最大和建筑能耗综合值最小为目标,则与传统方案相比建筑能耗综合值可以降低59.4%,但是年均系统花费会增加14.7%.

关键词: 可再生能源系统优化设计近零能耗住宅夏热冬冷地区    
Abstract:

Photovoltaic system, photothermal system and energy storage system of a near-zero energy residence were not optimized simultaneously and the installation locations of photovoltaic panels and photothermal panels on the building were not considered. An optimization design method of renewable energy systems was proposed by taking a typical near-zero energy residence in hot summer and cold winter zone as an example. The particle swarm optimization algorithm was utilized by taking average annual cost, comprehensive energy consumption and photovoltaic consumption rate as the objective respectively. The installation locations and capacity of photovoltaic panels and photothermal panels and capacity of batteries were optimized. Results show that average annual cost and comprehensive energy consumption can decrease by 15.8% and 87.7% respectively compared with the traditional scheme by taking average annual cost and comprehensive energy consumption as the objective respectively. Comprehensive energy consumption decreases by 65.8% while average annual cost increases by 4.3% by taking average annual cost and comprehensive energy consumption as targets simultaneously. Comprehensive energy consumption decreases by 59.4% while average annual cost increases by 14.7% by taking photovoltaic accommodation rate and comprehensive energy consumption as targets simultaneously.

Key words: renewable energy system    optimization design    near-zero energy residence    hot summer and cold winter zone
收稿日期: 2022-10-31 出版日期: 2023-04-21
CLC:  TU 241  
基金资助: “十三五”国家重点研发计划资助项目(2018YFC0704404);浙江大学平衡建筑研究中心科研资助项目(K横20203512-24C)
通讯作者: 明焱     E-mail: hn_csq@126.com;mmmgmmm@vip.sina.com
作者简介: 陈淑琴(1981—),女,副教授,从事建筑节能的研究. orcid.org/0000-0002-5710-8480. E-mail: hn_csq@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈淑琴
虞昂
明焱
丁德
杨毅

引用本文:

陈淑琴,虞昂,明焱,丁德,杨毅. 夏热冬冷地区近零能耗住宅可再生能源设计[J]. 浙江大学学报(工学版), 2023, 57(4): 795-804.

Shu-qin CHEN,Ang YU,Yan MING,De DING,Yi YANG. Design of renewable energy systems for near-zero energy residence in hot summer and cold winter zone. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 795-804.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.017        https://www.zjujournals.com/eng/CN/Y2023/V57/I4/795

图 1  家庭能源管理系统的能量流
图 2  基于粒子群算法的可再生能源系统优化设计方法
图 3  杭州市典型住宅的平面图
参数 数值
Kw/(W·m?2·K?1) 0.15
Kr/(W·m?2·K?1) 0.15
p 0.3
Kwin/(W·m?2·K?1) 1
s 冬季0.4,夏季0.3
Kdw, Kf, Kc/(W·m?2·K?1) 2
A 1
表 1  围护结构热工参数
房间类型 Rper/% Pequ/(W·m?2) Requ/% Plig/(W·m?2) Tlig/h
起居室 19.5 5 39.4 6 180
卧室 35.4 6 19.6 6 180
餐厅 19.5 5 39.4 6 180
厨房 4.2 24 16.7 6 180
洗手间 16.7 0 0 6 180
表 2  人员、设备及照明的设置
图 4  建筑逐日制冷能耗、采暖能耗、照明能耗、电器逐日能耗与热水逐日负荷
图 5  典型日电动汽车的充电负荷
图 6  典型住宅立面位置划分
部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW 部位 J/(kW·h·m?2·a?1) Rpv/kW
W-1(1F) 779.24 5.23 S-2(7F) 636.52 0.78 S-6(6F) 617.52 0.78 S-10(5F) 602.84 0.78
W-1(2F) 779.24 5.23 S-3(1F) 261.19 1.90 S-6(7F) 633.41 0.78 S-10(6F) 621.51 0.78
W-1(3F) 779.24 5.23 S-3(2F) 293.06 1.90 S-7(1F) 215.02 1.90 S-10(7F) 635.36 0.78
W-1(4F) 779.24 5.23 S-3(3F) 315.36 1.90 S-7(2F) 262.91 1.90 S-11(1F) 235.13 1.90
W-1(5F) 779.24 5.23 S-3(4F) 326.67 1.90 S-7(3F) 299.05 1.90 S-11(2F) 278.68 1.90
W-1(6F) 779.24 5.23 S-3(5F) 337.40 1.90 S-7(4F) 317.66 1.90 S-11(3F) 311.05 1.90
W-1(7F) 779.24 5.23 S-3(6F) 350.37 1.90 S-7(5F) 330.97 1.90 S-11(4F) 325.61 1.90
E-1(1F) 389.27 5.23 S-3(7F) 384.54 1.90 S-7(6F) 346.66 1.90 S-11(5F) 337.71 1.90
E-1(2F) 389.27 5.23 S-4(1F) 483.26 0.78 S-7(7F) 382.89 1.90 S-11(6F) 350.52 1.90
E-1(3F) 389.27 5.23 S-4(2F) 522.50 0.78 S-8(1F) 416.27 0.78 S-11(7F) 384.81 1.90
E-1(4F) 389.27 5.23 S-4(3F) 568.75 0.78 S-8(2F) 472.61 0.78 S-12(1F) 436.94 0.78
E-1(5F) 389.27 5.23 S-4(4F) 591.46 0.78 S-8(3F) 538.34 0.78 S-12(2F) 484.19 0.78
E-1(6F) 389.27 5.23 S-4(5F) 605.91 0.78 S-8(4F) 581.98 0.78 S-12(3F) 539.70 0.78
E-1(7F) 389.27 5.23 S-4(6F) 621.06 0.78 S-8(5F) 599.94 0.78 S-12(4F) 579.64 0.78
S-1(1F) 505.02 2.92 S-4(7F) 635.14 0.78 S-8(6F) 617.22 0.78 S-12(5F) 608.25 0.78
S-1(2F) 531.56 2.92 S-5(1F) 401.31 5.83 S-8(7F) 633.36 0.78 S-12(6F) 624.36 0.78
S-1(3F) 550.20 2.92 S-5(2F) 449.03 5.83 S-9(1F) 365.94 5.83 S-12(7F) 636.52 0.78
S-1(4F) 561.72 2.92 S-5(3F) 491.96 5.83 S-9(2F) 420.73 5.83 S-13(1F) 395.01 2.92
S-1(5F) 571.64 2.92 S-5(4F) 510.70 5.83 S-9(3F) 476.59 5.83 S-13(2F) 435.63 2.92
S-1(6F) 582.61 2.92 S-5(5F) 527.33 5.83 S-9(4F) 503.54 5.83 S-13(3F) 475.52 2.92
S-1(7F) 598.84 2.92 S-5(6F) 545.30 5.83 S-9(5F) 525.09 5.83 S-13(4F) 496.80 2.92
S-2(1F) 511.21 0.78 S-5(7F) 570.58 5.83 S-9(6F) 545.09 5.83 S-13(5F) 516.28 2.92
S-2(2F) 545.76 0.78 S-6(1F) 423.31 0.78 S-9(7F) 570.67 5.83 S-13(6F) 529.01 2.92
S-2(3F) 581.51 0.78 S-6(2F) 480.10 0.78 S-10(1F) 418.84 0.78 S-13(7F) 549.69 2.92
S-2(4F) 598.16 0.78 S-6(3F) 542.99 0.78 S-10(2F) 471.99 0.78 屋顶 1 059.80 46.4
S-2(5F) 611.35 0.78 S-6(4F) 582.62 0.78 S-10(3F) 534.94 0.78
S-2(6F) 624.43 0.78 S-6(5F) 600.17 0.78 S-10(4F) 577.36 0.78
表 3  建筑立面与屋顶的太阳年辐射量和光伏装机容量
部件参数 数值 部件参数 数值
光伏发电效率/% 17.67 热泵热水器COP 4.2
光伏运行效率 0.8 热泵主机单价/元 3 300
光伏板单价/(元·W?1 ) 4 蓄热水箱单价/元 1 000
光伏板寿命/a 20 热泵热水器寿命/a 10
蓄电池单价/(元·kW·h?1 ) 1 500 电热水器成本/元 1 500
蓄电池寿命/a 15 电加热器COP 0.95
蓄电池最大SOC 1 电加热器寿命/a 10
蓄电池最小SOC 0.2 光热板单价/元 1 300
电池充放电效率 0.9 每年添加防冻液的成本/元 200
光伏逆变器单价/(元·W?1 ) 0.8 光热系统寿命/a 10
表 4  各部件的系统参数设置
图 7  年均系统花费最小的优化配置结果
图 8  建筑能耗综合值最小的优化配置结果
图 9  年均系统花费和建筑能耗综合值的多目标优化配置结果
图 10  各方案的年均系统花费和建筑能耗综合值
图 11  光伏消纳率和建筑能耗综合值的多目标优化配置结果
图 12  各方案的光伏消纳率和建筑能耗综合值
1 中华人民共和国中央人民政府. 习近平在第七十五届联合国大会一般辩论上发表重要讲话[EB/OL]. (2020-09-22)[2022-12-15]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm?gov.
2 中华人民共和国国家发展和改革委员会. “十四五”循环经济发展规划: 推行分布式能源及光伏储能一体化系统应用[EB/OL]. (2021-07-14)[2022-12-15]. https://www.ndrc.gov.cn/xwdt/ztzl/sswxhjjfzgh/202107/t20210714_1290432.html?code=&state=123.
3 ZHOU T, SUN W Optimization of battery supercapacitor hybrid energy storage station in wind/solar generation system[J]. IEEE Transactions on Sustainable Energy, 2014, 5 (2): 408- 415
doi: 10.1109/TSTE.2013.2288804
4 GITIZADEH M, FAKHARZADEGAN H Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic syste-ms[J]. Energy, 2013, 65 (1): 665- 674
5 NAYAK C K, NAYAK M R, BEHERA R Simple moving average based capacity optimization for VRLA battery in PV power smoothing application using MCTLBO[J]. Journal of Energy Storage, 2018, 17: 20- 28
doi: 10.1016/j.est.2018.02.010
6 陈燕哲. 陕西地区地下水源热泵工程应用适应性评价及软件[D]. 西安: 西安建筑科技大学, 2014.
CHEN Yan-zhe. Adaptability evaluation and software of groundwater source heat pump engineering application in Shanxi province [D]. Xi’an: Xi’an University of Architecture and Technology, 2014.
7 ERDIL E, ILKAN M, EGELIOGLU F An experimental study on energy generation with a photovoltaic (PV) -solar thermal hybrid system[J]. Energy, 2008, 33 (8): 1241- 1245
doi: 10.1016/j.energy.2008.03.005
8 荆亚州. 典型地区典型建筑节能技术适应性分析及评价[D]. 北京: 北京建筑大学, 2013.
JING Ya-zhou. Research and evaluation on suitable typical technology for building energy conservation in representative cities [D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013.
9 陈淑琴, 陆敏艳, 谭洪卫, 等 基于多目标优化的办公建筑可再生能源系统集成优化配置方案研究[J]. 太阳能学报, 2018, 39 (11): 3147- 3154
CHEN Shu-qin, LU Min-yan, TAN Hong-wei, et al Research on integration renewable energy systems in office building based on multi-objective optimization[J]. Acta-Energiae Solaris Sinica, 2018, 39 (11): 3147- 3154
10 WANG L, GWILLIAM J, JONES P Case study of zero energy house design in UK[J]. Energy and Buildings, 2009, 41: 1215- 1222
doi: 10.1016/j.enbuild.2009.07.001
11 MENDES G, FENG W, MICHAEL S, et al Regional analysis of building distributed energy costs and CO2 abatement: a U. S. –China comparison [J]. Energy and Buildings, 2014, 77: 112- 119
doi: 10.1016/j.enbuild.2014.03.047
12 ANWAR H, DINCER I Development of power system designs for a net zero energy house[J]. Energy and Buildings, 2014, 73: 120- 129
doi: 10.1016/j.enbuild.2014.01.027
13 NOTTROTT A, KLEISLL J, WASHOM B Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems[J]. Renewable energy, 2013, 55: 230- 240
doi: 10.1016/j.renene.2012.12.036
14 中华人民共和国住房和城乡建设部. 近零能耗建筑技术标准: GB/T 51350—2019 [S]. 北京: 中国建筑工业出版社, 2019.
15 王新镇. 杭州住宅适应性热舒适特征及热环境调节策略研究[D]. 杭州: 浙江大学, 2019.
WANG Xin-zhen. Research on adaptive thermal comfort characteristics and thermal environment adjust strategy of Hangzhou dwelling house [D]. Hangzhou: Zhejiang University, 2019.
16 和敬涵, 谢毓毓, 叶豪东, 等 电动汽车充电模式对主动配电网的影响[J]. 电力建设, 2015, 36 (1): 97- 102
HE Jing-han, XIE Yu-yu, YE Hao-dong, et al Influence of electric vehicles charging modes on active network distribution[J]. Electric Power Construction, 2015, 36 (1): 97- 102
doi: 10.3969/j.issn.1000-7229.2015.01.015
17 艾克 面向碳达峰、碳中和目标的汽车产业实施路线图[J]. 汽车与配件, 2021, (22): 36- 39
AI Ke A road map for the automobile industry to reach the goal of carbon emissions peak and carbon neutrality[J]. Automobile and Parts, 2021, (22): 36- 39
doi: 10.3969/j.issn.1006-0162.2021.22.006
18 李天宁, 王浩国, 董灵鹏, 等 考虑居民小区充电负荷与成本的电动汽车有序充电策略[J]. 浙江电力, 2022, 41 (5): 8- 13
LI Tian-ning, WANG Hao-guo, DONG Ling-peng, et al Research on coordinated charging strategy considering load and cost of electric vehicles in a residential quarter[J]. Zhejiang Electric Power, 2022, 41 (5): 8- 13
19 田立亭, 史双龙, 贾卓 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34 (11): 126- 130
TIAN Li-ting, SHI Shuang-long, JIA Zhuo A statistical model for charging power demand of electric vehicles[J]. Power System Technology, 2010, 34 (11): 126- 130
20 张华. 城市建筑屋顶光伏利用潜力评估研究[D]. 天津: 天津大学, 2017.
ZHANG Hua. Research on PV energy potential of rooftop in urban area [D]. Tianjin: Tianjin University, 2017.
[1] 季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.
[2] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[3] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[4] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[5] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[6] 陆江,王登辉,赵康,刘诗韵. 自保温建筑不同末端间歇供暖的实测效果分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2092-2099.
[7] 葛坚,王登辉,赵康. 夏热冬冷地区供暖房间冷风渗透影响因素[J]. 浙江大学学报(工学版), 2019, 53(7): 1415-1422.
[8] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[9] 张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
[10] 刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.
[11] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[12] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[13] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[14] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[15] 傅新, 钱晓倩, 钱匡亮, 董凯, 阮方. 夏热冬冷地区采暖空调计算期确定方法[J]. 浙江大学学报(工学版), 2017, 51(4): 729-738.