Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 632-642    DOI: 10.3785/j.issn.1008-973X.2023.03.022
航空航天技术     
基于高斯过程回归的机翼/短舱一体化气动优化
季廷炜(),莫邵昌,谢芳芳*(),张鑫帅,蒋逸阳,郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression
Ting-wei JI(),Shao-chang MO,Fang-fang XIE*(),Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG
School of Aeronautics and Astronautics, Zhengjiang University, Hangzhou 310027, China
 全文: PDF(3302 KB)   HTML
摘要:

为了解决机翼/短舱一体化气动设计的高维非线性优化问题,基于高斯过程回归(GPR)模型提出新型优化设计方法. 采用类别形状函数变换(CST)方法对机翼/短舱一体化构型中的翼型进行几何参数化建模;通过控制机翼形状参数、短舱形状参数和短舱安装参数实现机翼/短舱构型变形,该参数化建模过程共计包含50个设计参数. 通过GPR模型构建机翼/短舱设计参数与气动性能之间的代理模型,并采用贝叶斯优化(BO)算法实现代理模型的自更新和最优气动外形的获取. 结果表明:优化后一体化构型的阻力系数下降了10.95%,通过流场分析发现机翼外形和短舱外形的优化改善了表面流场结构,短舱安装位置的优化减弱了机翼和短舱间的气动干扰.

关键词: 机翼/短舱气动优化设计参数化建模高斯过程回归(GPR)贝叶斯优化(BO)    
Abstract:

A new optimization design method based on Gaussian process regression (GPR) model was proposed to resolve the high-dimensional nonlinear optimization problem of integrated aerodynamic design of wing/nacelle. The geometric parametric modeling of the airfoils in the integrated configuration of wing/nacelle was realized by the class and shape transformation (CST) method. The deformation of the integrated configuration of wing/nacelle was achieved by controlling the wing shape parameters, the nacelle shape parameters and the nacelle installation parameters. The parametric modeling process included 50 design parameters in total. The GPR model was used to construct a surrogate model between the design parameters and the aerodynamics performance of the integrated wing/nacelle geometry. Bayesian optimization (BO) algorithm was used to realize the self-update of the surrogate model and the acquisition of the optimal aerodynamic shape. Results showed that the drag coefficient of the integrated configuration was reduced by 10.95% after the optimization. The flow field analysis shows that the optimization of the wing shape and the nacelle shape improves the surface flow field structure, and the optimization of the nacelle’s installation position reduces the aerodynamic interference between wing and nacelle.

Key words: wing/nacelle    aerodynamic optimization design    parametric modeling    Gaussian process regression (GPR)    Bayesian optimization (BO)
收稿日期: 2022-10-09 出版日期: 2023-03-31
CLC:  V 221.3  
通讯作者: 谢芳芳     E-mail: zjjtw@zju.edu.cn;fangfang_xie@zju.edu.cn
作者简介: 季廷炜(1983—),男,副研究员,硕导,从事飞行器优化设计研究. orcid.org/0000-0001-7556-6867. E-mail: zjjtw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
季廷炜
莫邵昌
谢芳芳
张鑫帅
蒋逸阳
郑耀

引用本文:

季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.

Ting-wei JI,Shao-chang MO,Fang-fang XIE,Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG. Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 632-642.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.022        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/632

参数 数值
参考面积S/m2 0.072 7
平均气动弦长c/m 0.141 2
展长b/m 0.585 7
短舱前伸量X/mm 15.0
短舱下沉量Z/mm 7.5
表 1  翼-身-短舱-挂架初始几何构型的参数
图 1  RAE2822参数化翼型与真实翼型的对比
图 2  DLR-F4机翼的几何
图 3  短舱型线的几何参数
图 4  非轴对称短舱的几何
图 5  短舱边界
图 6  DLR-F4几何的网格
图 7  DLR-F4几何的机翼压力系数分布
图 8  NAL-AERO-02-01几何的压力系数分布
图 9  DLR-F4翼型截面的设计空间
参数 初始值 参数设计范围
$ {r_{{\text{if}}}} $ $ {r_{{\text{if,0}}}} $ (0.5 $ {r_{{\text{if,0}}}} $, 1.5 $ {r_{{\text{if,0}}}} $)
$ {r_{{\text{max}}}} $ $ {r_{{\text{hl}}}}+\Delta {r_{{\text{up}}}} $ ( $ {r_{{\text{hl}}}} $+0.89 $ \Delta {r_{{\text{up}}}} $, $ {r_{{\text{hl}}}} $+1.44 $ \Delta {r_{{\text{up}}}} $)
$ {f_{{\text{max}}}} $/% 32.5 (25, 40)
$\;{\beta _{ {\text{nac} } } }$/(°) ?12.89 (?25, ?11)
$ {r_{{\text{hi}}}} $ $ {r_{{\text{hi,0}}}} $ ( ${r_{ {\text{hi,0} } } } - \Delta {r_{ {\text{do} } } }$, ${r_{ {\text{hi,0} } } }$)
$ {f_{\text{i}}} $/% 39 (29, 49)
${\;\beta _{ {\text{int} } } }$/(°) 1 (0, 10)
X/mm 15 (0, 30)
Z/mm 7.5 (0, 15)
表 2  短舱型线直观参数和短舱安装位置的设计范围
图 10  基于高斯过程回归机器学习架构的优化框架
图 11  翼-身-短舱-挂架构型优化中的收敛过程
构型 Cd
机翼 机身 短舱 挂架
初始构型 209.1 100.2 55.7 4.0
优化构型 196.6 91.8 34.5 5.7
表 3  优化前后各个部件的阻力系数变化
构型 $ {d_{{\text{s1}}}} $ $ {d_{{\text{s2}}}} $ $ S $ $ {C_{\text{l}}} $ $ {C_{\text{d}}} $ $ {C_{{\text{d,p}}}} $ $ {C_{{\text{d,f}}}} $
初始构型 0.150 640 0.121 876 0.072 700 0.492 397 0.036 898 0.022 295 0.014 434
优化构型 0.154 776 0.124 436 0.077 607 0.492 451
(+0.01%)
0.032 859
(?10.95%)
0.018 898
(?15.24%)
0.013 961
(?3.28%)
表 4  优化前后翼-身-短舱-挂架构型的气动性能和结构参数对比
图 12  优化前后的短舱型线对比
图 13  优化前后的机翼翼型截面对比
图 14  机翼上翼面压力系数对比
图 15  优化前后机翼压力系数对比
图 16  机翼37.1%展长处的马赫数分布
图 17  短舱不同截面处的压力系数对比
1 张宇飞, 陈海昕, 符松, 等 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33 (11): 1993- 2001
ZHANG Yu-fei, CHEN Hai-xin, FU Song, et al A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (11): 1993- 2001
2 白俊强, 徐家宽, 黄江涛, 等 多区域自由变形技术在短舱安装位置减阻设计中的应用研究[J]. 空气动力学学报, 2014, 32 (5): 682- 687
BAI Jun-qiang, XU Jia-kuan, HUANG Jiang-tao, et al Drag reduction design of install position of nacelle based on multi-zone FFD technology[J]. Acta Aerodynamica Sinica, 2014, 32 (5): 682- 687
3 邱亚松, 白俊强, 黄琳, 等 翼吊发动机短舱对三维增升装置的影响及改善措施研究[J]. 空气动力学学报, 2012, 30 (1): 7- 13
QIU Ya-song S, BAI Jun-qiang, HUANG Lin, et al Study about influence of wing-mounted engine nacelle on high-lift system and improvement measures[J]. Acta Aerodynamica Sinica, 2012, 30 (1): 7- 13
4 TEJERO F, ROBINSON M, MACMANUS D G, et al Multi-objective optimisation of short nacelles for high bypass ratio engines[J]. Aerospace Science and Technology, 2019, 91: 410- 421
doi: 10.1016/j.ast.2019.02.014
5 TEJERO F, GOULOS I, MACMANUS D G, et al. Effects of aircraft integration on compact nacelle aerodynamics [C]// AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 2020-2225 .
6 张冬云, 张美红, 王美黎, 等 翼吊布局民机短舱位置气动影响[J]. 空气动力学学报, 2017, 35 (6): 781- 786
ZHANG Dong-yin, ZHANG Mei-hong, WANG Mei-li, et al Aero-dynamic influence of nacelle position of a wing-mounted civil aircraft[J]. Acta Aerodynamica Sinica, 2017, 35 (6): 781- 786
7 KOC S, KIM H J, NAKAHASHI K. Aerodynamic design of wing-body-nacelle-pylon configuration [C]// 17th AIAA Computational Fluid Dynamics Conference. Toronto: AIAA, 2005: 2005-4856.
8 SAITOH T, KIM H J, TAKENAKA K, et al. Multi-Point design of wing-body-nacelle-pylon configuration [C]// 24th Applied Aerodynamics Conference. San Francisco: AIAA, 2006: 3461.
9 EPSTEIN B, PEIGIN S Automatic optimization of wing–body–under-the-wing-mounted-nacelle configurations[J]. Journal of Aircraft, 2016, 53 (3): 691- 700
doi: 10.2514/1.C033641
10 BONS N P, MADER C A, MARTINS J R R A, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet [C]// AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2018: 106.
11 LI J, GAO Z H, HUANG J T, et al Aerodynamic design optimization of nacelle/pylon position on an aircraft[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 850- 857
doi: 10.1016/j.cja.2013.04.052
12 LEI R W, BAI J Q, XU D Y Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method[J]. Aerospace Science and Technology, 2019, 93: 105285
doi: 10.1016/j.ast.2019.07.018
13 王景. 基于Stackelberg博弈与连续伴随方法的气动外形优化设计 [D]. 杭州: 浙江大学, 2018.
WANG Jing. Aerodynamic shape optimization by Stackelberg game coupled with the continuous adjoint method [D]. Hangzhou: Zhejiang University, 2018.
14 张玄武, 郑耀, 杨波威, 等 基于级联前向网络的翼型优化设计[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1405- 1411
ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, et al Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1405- 1411
15 HOOKER J R, WICK A, ZEUNE C, et al. Over wing nacelle installations for improved energy efficiency [C]// 31st AIAA Applied Aerodynamics Conference. San Diego: AIAA, 2013: 2013-2920.
16 REDEKER G. A selection of experimental test cases for the validation of cfd codes [R]. [S.l.]: AGARD, 1994.
17 STRAATHOF M H, VAN TOOREN M J L Extension to the class-shape-transformation method based on B-splines[J]. AIAA Journal, 2011, 49 (4): 780- 790
doi: 10.2514/1.J050706
18 ZHU F, QIN N Intuitive class/shape function parameterization for airfoils[J]. AIAA Journal, 2014, 52 (1): 17- 25
doi: 10.2514/1.J052610
19 SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]// 30th Aerospace Sciences Meeting and Exhibit. [S.l.]: AIAA, 1992: 1992-0439.
20 HIROSE N, ASAI K, IKAWA K, et al Euler flow analysis of turbine powered simulator and fanjet engine[J]. Journal of Propulsion and Power, 1991, 7 (6): 1015- 1022
doi: 10.2514/3.23421
21 LI J, LI F W, QIN E Numerical simulation of transonic flow over wing-mounted twin-engine transport aircraft[J]. Journal of Aircraft, 2000, 37 (3): 469- 478
doi: 10.2514/2.2621
22 刘凯礼, 姬昌睿, 谭兆光, 等 大涵道比涡扇发动机TPS短舱低速气动特性分析[J]. 推进技术, 2015, 36 (2): 186- 193
LIU Kai-li, JI Chang-rui, TAN Zhao-guang, et al Numerical study on low speed aerodynamic performance of large bypass ratio engine TPS nacelle[J]. Journal of Propulsion Technology, 2015, 36 (2): 186- 193
doi: 10.13675/j.cnki.tjjs.2015.02.004
[1] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[2] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[3] 童水光, 葛俊旭, 吴燕玲, 等. 门座起重机组合臂架结构的快速建模方法[J]. J4, 2009, 43(11): 2085-2090.