航空航天技术 |
|
|
|
|
基于高斯过程回归的机翼/短舱一体化气动优化 |
季廷炜( ),莫邵昌,谢芳芳*( ),张鑫帅,蒋逸阳,郑耀 |
浙江大学 航空航天学院,浙江 杭州 310027 |
|
Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression |
Ting-wei JI( ),Shao-chang MO,Fang-fang XIE*( ),Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG |
School of Aeronautics and Astronautics, Zhengjiang University, Hangzhou 310027, China |
引用本文:
季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.
Ting-wei JI,Shao-chang MO,Fang-fang XIE,Xin-shuai ZHANG,Yi-yang JIANG,Yao ZHENG. Integrated aerodynamic optimization of wing/nacelle based on Gaussian process regression. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 632-642.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.022
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I3/632
|
1 |
张宇飞, 陈海昕, 符松, 等 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33 (11): 1993- 2001 ZHANG Yu-fei, CHEN Hai-xin, FU Song, et al A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (11): 1993- 2001
|
2 |
白俊强, 徐家宽, 黄江涛, 等 多区域自由变形技术在短舱安装位置减阻设计中的应用研究[J]. 空气动力学学报, 2014, 32 (5): 682- 687 BAI Jun-qiang, XU Jia-kuan, HUANG Jiang-tao, et al Drag reduction design of install position of nacelle based on multi-zone FFD technology[J]. Acta Aerodynamica Sinica, 2014, 32 (5): 682- 687
|
3 |
邱亚松, 白俊强, 黄琳, 等 翼吊发动机短舱对三维增升装置的影响及改善措施研究[J]. 空气动力学学报, 2012, 30 (1): 7- 13 QIU Ya-song S, BAI Jun-qiang, HUANG Lin, et al Study about influence of wing-mounted engine nacelle on high-lift system and improvement measures[J]. Acta Aerodynamica Sinica, 2012, 30 (1): 7- 13
|
4 |
TEJERO F, ROBINSON M, MACMANUS D G, et al Multi-objective optimisation of short nacelles for high bypass ratio engines[J]. Aerospace Science and Technology, 2019, 91: 410- 421
doi: 10.1016/j.ast.2019.02.014
|
5 |
TEJERO F, GOULOS I, MACMANUS D G, et al. Effects of aircraft integration on compact nacelle aerodynamics [C]// AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 2020-2225 .
|
6 |
张冬云, 张美红, 王美黎, 等 翼吊布局民机短舱位置气动影响[J]. 空气动力学学报, 2017, 35 (6): 781- 786 ZHANG Dong-yin, ZHANG Mei-hong, WANG Mei-li, et al Aero-dynamic influence of nacelle position of a wing-mounted civil aircraft[J]. Acta Aerodynamica Sinica, 2017, 35 (6): 781- 786
|
7 |
KOC S, KIM H J, NAKAHASHI K. Aerodynamic design of wing-body-nacelle-pylon configuration [C]// 17th AIAA Computational Fluid Dynamics Conference. Toronto: AIAA, 2005: 2005-4856.
|
8 |
SAITOH T, KIM H J, TAKENAKA K, et al. Multi-Point design of wing-body-nacelle-pylon configuration [C]// 24th Applied Aerodynamics Conference. San Francisco: AIAA, 2006: 3461.
|
9 |
EPSTEIN B, PEIGIN S Automatic optimization of wing–body–under-the-wing-mounted-nacelle configurations[J]. Journal of Aircraft, 2016, 53 (3): 691- 700
doi: 10.2514/1.C033641
|
10 |
BONS N P, MADER C A, MARTINS J R R A, et al. High-fidelity aerodynamic shape optimization of a full configuration regional jet [C]// AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee: AIAA, 2018: 106.
|
11 |
LI J, GAO Z H, HUANG J T, et al Aerodynamic design optimization of nacelle/pylon position on an aircraft[J]. Chinese Journal of Aeronautics, 2013, 26 (4): 850- 857
doi: 10.1016/j.cja.2013.04.052
|
12 |
LEI R W, BAI J Q, XU D Y Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method[J]. Aerospace Science and Technology, 2019, 93: 105285
doi: 10.1016/j.ast.2019.07.018
|
13 |
王景. 基于Stackelberg博弈与连续伴随方法的气动外形优化设计 [D]. 杭州: 浙江大学, 2018. WANG Jing. Aerodynamic shape optimization by Stackelberg game coupled with the continuous adjoint method [D]. Hangzhou: Zhejiang University, 2018.
|
14 |
张玄武, 郑耀, 杨波威, 等 基于级联前向网络的翼型优化设计[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1405- 1411 ZHANG Xuan-wu, ZHENG Yao, YANG Bo-wei, et al Aerodynamic optimization design of airfoil configurations based on cascade feedforward neural network[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1405- 1411
|
15 |
HOOKER J R, WICK A, ZEUNE C, et al. Over wing nacelle installations for improved energy efficiency [C]// 31st AIAA Applied Aerodynamics Conference. San Diego: AIAA, 2013: 2013-2920.
|
16 |
REDEKER G. A selection of experimental test cases for the validation of cfd codes [R]. [S.l.]: AGARD, 1994.
|
17 |
STRAATHOF M H, VAN TOOREN M J L Extension to the class-shape-transformation method based on B-splines[J]. AIAA Journal, 2011, 49 (4): 780- 790
doi: 10.2514/1.J050706
|
18 |
ZHU F, QIN N Intuitive class/shape function parameterization for airfoils[J]. AIAA Journal, 2014, 52 (1): 17- 25
doi: 10.2514/1.J052610
|
19 |
SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows [C]// 30th Aerospace Sciences Meeting and Exhibit. [S.l.]: AIAA, 1992: 1992-0439.
|
20 |
HIROSE N, ASAI K, IKAWA K, et al Euler flow analysis of turbine powered simulator and fanjet engine[J]. Journal of Propulsion and Power, 1991, 7 (6): 1015- 1022
doi: 10.2514/3.23421
|
21 |
LI J, LI F W, QIN E Numerical simulation of transonic flow over wing-mounted twin-engine transport aircraft[J]. Journal of Aircraft, 2000, 37 (3): 469- 478
doi: 10.2514/2.2621
|
22 |
刘凯礼, 姬昌睿, 谭兆光, 等 大涵道比涡扇发动机TPS短舱低速气动特性分析[J]. 推进技术, 2015, 36 (2): 186- 193 LIU Kai-li, JI Chang-rui, TAN Zhao-guang, et al Numerical study on low speed aerodynamic performance of large bypass ratio engine TPS nacelle[J]. Journal of Propulsion Technology, 2015, 36 (2): 186- 193
doi: 10.13675/j.cnki.tjjs.2015.02.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|