| 计算机技术 |
|
|
|
|
| 基于多方位感知深度融合检测头的目标检测算法 |
包晓安1( ),彭书友1,张娜1,涂小妹2,张庆琪3,吴彪4,*( ) |
1. 浙江理工大学 计算机科学与技术学院,浙江 杭州 310018 2. 浙江广厦建设职业技术大学 建筑工程学院,浙江 东阳 322100 3. 山口大学 大学院东亚研究科,日本 山口 753-8514 4. 浙江理工大学 理学院,浙江 杭州 310018 |
|
| Object detection algorithm based on multi-azimuth perception deep fusion detection head |
Xiao’an BAO1( ),Shuyou PENG1,Na ZHANG1,Xiaomei TU2,Qingqi ZHANG3,Biao WU4,*( ) |
1. School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. School of Civil Engineering and Architecture, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322100, China 3. Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi 753-8514, Japan 4. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China |
引用本文:
包晓安,彭书友,张娜,涂小妹,张庆琪,吴彪. 基于多方位感知深度融合检测头的目标检测算法[J]. 浙江大学学报(工学版), 2026, 60(1): 32-42.
Xiao’an BAO,Shuyou PENG,Na ZHANG,Xiaomei TU,Qingqi ZHANG,Biao WU. Object detection algorithm based on multi-azimuth perception deep fusion detection head. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 32-42.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.003
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/32
|
| 1 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
| 2 |
LI W, ZHAO D, YUAN B, et al PETDet: proposal enhancement for two-stage fine-grained object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5602214
|
| 3 |
LI H, SHI F A DETR-like detector-based semi-supervised object detection method for Brassica Chinensis growth monitoring[J]. Computers and Electronics in Agriculture, 2024, 219: 108788
doi: 10.1016/j.compag.2024.108788
|
| 4 |
HOU X, LIU M, ZHANG S, et al. Relation DETR: exploring explicit position relation prior for object detection [C]// Proceedings of the European Conference on Computer Vision. Milan: Springer, 2024: 89–105.
|
| 5 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
|
| 6 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers [C]// Proceedings of the European Conference on Computer Vision. Glasgow: Springer, 2020: 213–229.
|
| 7 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
|
| 8 |
TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626–9635.
|
| 9 |
DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568–6577.
|
| 10 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 3–19.
|
| 11 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936–944.
|
| 12 |
CHEN F, ZHANG H, HU K, et al. Enhanced training of query-based object detection via selective query recollection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 23756–23765.
|
| 13 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018−04−08) [2024−10−07]. https://arxiv.org/abs/1804.02767.
|
| 14 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020−04-23) [2024−10−07]. https://arxiv.org/abs/2004.10934.
|
| 15 |
TIAN Z, CHU X, WANG X, et al. Fully convolutional one-stage 3D object detection on LiDAR range images [EB/OL]. (2022−09−20) [2024−10−07]. https://arxiv.org/abs/2205.13764.
|
| 16 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. (2021−08−06) [2024−10−07]. https://arxiv.org/abs/2107.08430.
|
| 17 |
WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10183–10192.
|
| 18 |
DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 7369–7378.
|
| 19 |
LIANG J, SONG G, LENG B, et al. Unifying visual perception by dispersible points learning [C]// Proceedings of the European Conference on Computer Vision. Tel Aviv: Springer, 2022: 439–456.
|
| 20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
| 21 |
DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31×31: revisiting large kernel design in CNNs [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11953–11965.
|
| 22 |
LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992–10002.
|
| 23 |
ZHOU H, YANG R, ZHANG Y, et al UniHead: unifying multi-perception for detection heads[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36 (5): 9565- 9576
|
| 24 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 6000–6010.
|
| 25 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the European Conference on Computer Vision. Zurich: Springer, 2014: 740–755.
|
| 26 |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88 (2): 303- 338
doi: 10.1007/s11263-009-0275-4
|
| 27 |
CHEN K, WANG J, PANG J, et al. MMDetection: open MMLab detection toolbox and benchmark. [EB/OL]. (2019−06−17) [2024−10−07]. https://arxiv.org/abs/1906.07155.
|
| 28 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248–255.
|
| 29 |
ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756–9765.
|
| 30 |
KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection [C]// Proceedings of the European Conference on Computer Vision. Glasgow: Springer, 2020: 355–371.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|