| 机械与能源工程 |
|
|
|
|
| 基于因果解耦的域自适应滚动轴承故障诊断 |
黄爱颖( ),李晓辉,孙淑娴,朱逸群*( ) |
| 国网天津市电力公司 营销服务中心,天津 300160 |
|
| Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis |
Aiying HUANG( ),Xiaohui LI,Shuxian SUN,Yiqun ZHU*( ) |
| Marketing Service Center, State Grid Tianjin Electric Power Company, Tianjin 300160, China |
引用本文:
黄爱颖,李晓辉,孙淑娴,朱逸群. 基于因果解耦的域自适应滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2025, 59(7): 1523-1531.
Aiying HUANG,Xiaohui LI,Shuxian SUN,Yiqun ZHU. Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1523-1531.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.020
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1523
|
| 1 |
高萍. 基于可靠性分析的复杂设备预防性维修决策研究 [D]. 北京: 清华大学, 2008: 1–119. GAO Ping. The research on preventive maintenance decision of complex equipment based on reliability analysis [D]. Beijing: Tsinghua University, 2008: 1–119.
|
| 2 |
GAO Z, CECATI C, DING S X A survey of fault diagnosis and fault-tolerant techniques: Part II: fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (6): 3768- 3774
|
| 3 |
YIN S, DING S X, XIE X, et al A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 6418- 6428
doi: 10.1109/TIE.2014.2301773
|
| 4 |
CAI B, HUANG L, XIE M Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (5): 2227- 2240
doi: 10.1109/TII.2017.2695583
|
| 5 |
周策, 白斌, 叶楠 自适应粒子群优化支持向量回归的工程系统可靠性预测[J]. 机械工程学报, 2023, 59 (14): 328- 338 ZHOU Ce, BAI Bin, YE Nan Reliability prediction of engineering system based on adaptive particle swarm optimization support vector regression[J]. Journal of Mechanical Engineering, 2023, 59 (14): 328- 338
doi: 10.3901/JME.2023.14.328
|
| 6 |
HAN Y, TANG B, DENG L An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J]. Computers in Industry, 2019, 107: 50- 58
doi: 10.1016/j.compind.2019.01.012
|
| 7 |
AN Z, LI S, WANG J, et al A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network[J]. ISA Transactions, 2020, 100: 155- 170
doi: 10.1016/j.isatra.2019.11.010
|
| 8 |
PEI X, ZHENG X, WU J Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2515611
|
| 9 |
TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance [EB/OL]. (2014–12–10)[2024–06–10]. https://arxiv.org/pdf/1412.3474.
|
| 10 |
SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation [C]// Computer Vision – ECCV 2016 Workshops. [S.l.]: Springer, 2016: 443–450.
|
| 11 |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [M]// CSURKA G. Domain adaptation in computer vision applications. [S.l.]: Springer, 2017: 189–209.
|
| 12 |
CHEN Z, HE G, LI J, et al Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (11): 8702- 8712
doi: 10.1109/TIM.2020.2995441
|
| 13 |
LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation [C]// Proceedings of The 32nd International Conference on Neural Information Processing Systems. Montreal: [s.n.], 2018: 1647–1657.
|
| 14 |
JIAO J, LI H, ZHANG T, et al Source-free adaptation diagnosis for rotating machinery[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9586- 9595
doi: 10.1109/TII.2022.3231414
|
| 15 |
LI Y, SONG Y, JIA L, et al Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2833- 2841
doi: 10.1109/TII.2020.3008010
|
| 16 |
ZHAO K, JIANG H, WANG K, et al Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis[J]. Knowledge-Based Systems, 2021, 222: 106974
doi: 10.1016/j.knosys.2021.106974
|
| 17 |
RAS G, XIE N, VAN GERVEN M, et al Explainable deep learning: a field guide for the uninitiated[J]. Journal of Artificial Intelligence Research, 2022, 73: 329- 396
doi: 10.1613/jair.1.13200
|
| 18 |
LOCATELLO F, BAUER S, LUCIC M, et al. Challenging common assumptions in the unsupervised learning of disentangled representations [C]// International Conference on Learning Representations. Long Beach: [s.n.]. 2019, 97: 4114–4124.
|
| 19 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. (2022–12–10)[2024–06–10]. https://arxiv.org/pdf/1312.6114v11.
|
| 20 |
HIGGINS I, MATTHEY L, PAL A, et al. β-VAE: learning basic visual concepts with a constrained variational framework [C]// International Conference on Learning Representations. Puerto Rico: [s.n.]. 2016: 1–13.
|
| 21 |
LI J, WU B, SUN X, et al. Causal hidden Markov model for time series disease forecasting [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12100–12109.
|
| 22 |
LONG M, CAO Y, CAO Z, et al Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (12): 3071- 3085
doi: 10.1109/TPAMI.2018.2868685
|
| 23 |
PEARL J. Causality: models, reasoning and inference [M]. New York: Cambridge University Press, 2000: 1–478.
|
| 24 |
HOU B, YANG J, WANG P, et al LSTM-based auto-encoder model for ECG arrhythmias classification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (4): 1232- 1240
doi: 10.1109/TIM.2019.2910342
|
| 25 |
ZHAO Z, ZHANG Q, YU X, et al Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525828
|
| 26 |
SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
|
| 27 |
QIU H, LEE J, LIN J, et al Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289 (4/5): 1066- 1090
|
| 28 |
RANDALL R B, ANTONI J Rolling element bearing diagnostics: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25 (2): 485- 520
doi: 10.1016/j.ymssp.2010.07.017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|