Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1018-1030    DOI: 10.3785/j.issn.1008-973X.2025.05.015
机械工程     
自适应齿轮箱稀疏表示原子构建方法
周昶清1,2(),侯耀春2,武鹏2,*(),杨帅2,吴大转2
1. 上海船舶设备研究所,上海 200031
2. 浙江大学 能源工程学院,浙江 杭州 310027
Adaptive sparse representation atom construction method for gearbox diagnosis
Changqing ZHOU1,2(),Yaochun HOU2,Peng WU2,*(),Shuai YANG2,Dazhuan WU2
1. Shanghai Marine Equipment Research Institute, Shanghai 200031, China
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4602 KB)   HTML
摘要:

针对传统稀疏表示算法在齿轮箱信号干扰较多的情况下最优原子寻优效果不佳的问题,开发基于非对称高斯啁啾模型的改进原子寻优方法,以实现在低信噪比环境中获得更佳性能的目标. 利用具有多参数形状多变的非对称高斯啁啾模型,构建小波原子. 利用构建的小波原子,通过脉冲特征增强方法得到原始振动信号的特征增强信号. 通过最大化高斯条件下的循环平稳性检验指标,寻找与故障脉冲最匹配的小波原子参数,通过多重增强稀疏表示算法分离出故障瞬态分量. 通过公开数据集与故障模拟实验中齿轮箱故障数据集,验证了本文方法的有效性,并与原始方法和其他方法进行对比,证明了本文方法能够在齿轮箱信号存在较多干扰的情况下构建较优的稀疏表示原子.

关键词: 齿轮箱故障诊断稀疏表示非对称高斯啁啾模型脉冲特征增强    
Abstract:

An improved atom pursuit method based on the asymmetric Gaussian chirplet model (AGCM) was developed to achieve better performance in low signal-to-noise ratio environment in order to address the issue of poor optimal atom pursuit performance in traditional sparse representation algorithms under strong interference conditions in gearbox. Wavelet atoms were constructed by using AGCM with multi-parameter and variable shapes. Then a feature-enhanced signal was obtained through an impulse enhancement method. Atom parameters most compatible with fault impulses were identified by maximizing a statistical index under Gaussian hypothesis. Then fault transient components were separated through a multiple enhancement sparse representation algorithm. The effectiveness of the proposed method was validated by using both public dataset and gearbox fault simulation dataset. Comparative analysis with original methods and other existing approaches demonstrates that the proposed method can construct superior sparse representation atoms under strong interference conditions in gearbox signals.

Key words: gearbox    fault diagnosis    sparse representation    asymmetric Gaussian chirplet model    impulse enhancement method
收稿日期: 2024-03-29 出版日期: 2025-04-25
CLC:  TH 311  
基金资助: 核技术研发科研资助项目.
通讯作者: 武鹏     E-mail: cqzhou@zju.edu.cn;roc@zju.edu.cn
作者简介: 周昶清(1999—),男,硕士生,从事信号处理与故障诊断的研究. orcid.org/0009-0006-8264-4222. E-mail:cqzhou@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周昶清
侯耀春
武鹏
杨帅
吴大转

引用本文:

周昶清,侯耀春,武鹏,杨帅,吴大转. 自适应齿轮箱稀疏表示原子构建方法[J]. 浙江大学学报(工学版), 2025, 59(5): 1018-1030.

Changqing ZHOU,Yaochun HOU,Peng WU,Shuai YANG,Dazhuan WU. Adaptive sparse representation atom construction method for gearbox diagnosis. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1018-1030.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.015        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1018

图 1  脉冲响应方波的示意图
图 2  MESDOA方法最优原子构造的示意图
图 3  齿轮箱故障模拟实验台
图 4  齿轮箱故障模拟实验台的齿轮箱结构简图
图 5  齿轮箱斜齿齿轮故障元件图
图 6  齿轮箱滚动轴承故障元件图
图 7  PHM 2009数据集实验台与齿轮箱内部实物图
图 8  PHM 2009数据集齿轮箱的结构图
图 9  PHM 2009“直齿7”滚动轴承分量AGCM原子遍历寻优结果图
图 10  PHM 2009“直齿7”数据的稀疏表示结果
图 11  PHM 2009“斜齿5”数据的稀疏表示结果
图 12  齿轮箱故障模拟数据集的滚动轴承故障稀疏表示结果
图 13  齿轮箱故障模拟数据集的齿轮故障稀疏表示结果
图 14  PHM 2009“斜齿5”数据各方法提取的滚动轴承内环故障特征量化雷达图
图 15  PHM 2009“斜齿5”数据各方法提取的齿轮故障特征量化雷达图
图 16  齿轮箱故障模拟数据集各方法提取的滚动轴承内环故障特征量化雷达图
图 17  齿轮箱故障模拟数据集各方法提取的齿轮故障特征量化雷达图
图 18  PHM 2009“斜齿5”数据通过峭度与广义似然比得到的稀疏表示结果
1 HOU Y, WU P, WU D An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor[J]. Mechanical Systems and Signal Processing, 2023, 186 (3): 109836
2 HOU Y, ZHOU C, TIAN C, et al Acoustic feature enhancement in rolling bearing fault diagnosis using sparsity-oriented multipoint optimal minimum entropy deconvolution adjusted method[J]. Applied Acoustics, 2022, 201 (12): 109105
3 侯耀春, 周昶清, 武鹏, 等. 基于最大李雅普诺夫指数异常感知和CatBoost识别的机械密封失效模式层次化诊断框架[J]. 工程热物理学报, 2024, 45(1): 93-100.
HOU Yaochun, ZHOU Changqing, WU Peng, et al. Hierarchical diagnostic framework of mechanical seal failure modes based on maximum Lyapunov exponent anomaly sensing and CatBoost model recognition [J]. Journal of Engineering Thermophysics . 2024, 45(1): 93-100.
4 丁康, 李巍华, 朱小勇. 齿轮及齿轮箱故障诊断实用技术[M]. 北京: 机械工业出版社, 2005.
5 ERRICHELLO R, MULLER J. Gearbox reliability collaborative gearbox 1 failure analysis report: December 2010-January 2011 [R]. United States: National Renewable Energy Lab, 2012.
6 WANG W Q, ISMAIL F, GOLNARAGHI M F Assessment of gear damage monitoring techniques using vibration measurements[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 905- 922
doi: 10.1006/mssp.2001.1392
7 HUANG W, LI S, FU X, et al. Transient extraction based on minimax concave regularized sparse representation for gear fault diagnosis [J]. Measurement . 2020, 151(2): 107273.
8 WANG S, HUANG W, ZHU Z K Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25 (4): 1299- 1320
doi: 10.1016/j.ymssp.2010.10.013
9 LI N, HUANG W, GUO W, et al Multiple enhanced sparse decomposition for gearbox compound fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (3): 770- 781
10 WANG S, SELESNICK I, CAI G, et al Nonconvex sparse regularization and convex optimization for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (9): 7332- 7342
doi: 10.1109/TIE.2018.2793271
11 ZHOU Q, ZHANG Y, YI C, et al Convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model in bearing fault detection[J]. IEEE Sensors Journal, 2021, 21 (16): 18132- 18145
doi: 10.1109/JSEN.2021.3086015
12 SELESNICK I Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 2017, 65 (17): 4481- 4494
doi: 10.1109/TSP.2017.2711501
13 RAGUET H, LANDRIEU L Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[J]. SIAM Journal on Imaging Sciences, 2015, 8 (4): 2706- 2739
doi: 10.1137/15M1018253
14 ANTONI J, BORGHESANI P A statistical methodology for the design of condition indicators[J]. Mechanical Systems and Signal Processing, 2019, 114 (1): 290- 327
15 EDWARDS A W F. Likelihood [M]// Time series and statistics . New York: Springer, 1972: 126-129.
16 RICE J A. Mathematical statistics and data analysis [M]. Stamford: Cengage Learning, 2006.
17 LIN H, WU F, HE G Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization[J]. Mechanical Systems and Signal Processing, 2020, 142 (8): 106790
18 PHM Society. Public Data Sets. 2009 PHM challenge competition data set [DB/OL]. (2009-08-10)[2024-05-21]. https://phmsociety.org/public-data-sets.
19 HOU B, WANG D, KONG J, et al Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 174 (7): 109094
20 MCDONALD G L, ZHAO Q Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82 (1): 461- 477
21 LOPEZ C, WANG D, NARANJO A, et al Box-cox-sparse-measures-based blind filtering: understanding the difference between the maximum kurtosis deconvolution and the minimum entropy deconvolution[J]. Mechanical Systems and Signal Processing, 2022, 165 (2): 108376
[1] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[2] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[3] 邵帅,张开林,姚远,刘逸,王正洋. 动车组锥齿轮箱飞溅润滑特性及箱体结构改进[J]. 浙江大学学报(工学版), 2024, 58(5): 1060-1071.
[4] 耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.
[5] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[6] 吴超琦,罗健,周莹,娄鹏,尉玉. 中央传动齿轮箱复杂油路性能仿真[J]. 浙江大学学报(工学版), 2023, 57(11): 2337-2344.
[7] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[8] 孙菲,厉小润,赵辽英,余绍奇. 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1276-1284.
[9] 周国华,卢剑伟,倪彤光,胡学龙. 层次型非线性子空间字典学习[J]. 浙江大学学报(工学版), 2022, 56(6): 1159-1167.
[10] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[11] 牛英杰,苏燕辰,程敦诚,廖家,赵海波,高永强. 高铁接触网U型抱箍螺母故障检测算法[J]. 浙江大学学报(工学版), 2021, 55(10): 1912-1921.
[12] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
[13] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[14] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[15] 林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.