机械工程 |
|
|
|
|
自适应齿轮箱稀疏表示原子构建方法 |
周昶清1,2( ),侯耀春2,武鹏2,*( ),杨帅2,吴大转2 |
1. 上海船舶设备研究所,上海 200031 2. 浙江大学 能源工程学院,浙江 杭州 310027 |
|
Adaptive sparse representation atom construction method for gearbox diagnosis |
Changqing ZHOU1,2( ),Yaochun HOU2,Peng WU2,*( ),Shuai YANG2,Dazhuan WU2 |
1. Shanghai Marine Equipment Research Institute, Shanghai 200031, China 2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
周昶清,侯耀春,武鹏,杨帅,吴大转. 自适应齿轮箱稀疏表示原子构建方法[J]. 浙江大学学报(工学版), 2025, 59(5): 1018-1030.
Changqing ZHOU,Yaochun HOU,Peng WU,Shuai YANG,Dazhuan WU. Adaptive sparse representation atom construction method for gearbox diagnosis. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1018-1030.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.015
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1018
|
1 |
HOU Y, WU P, WU D An operating condition information-guided iterative variational mode decomposition method based on Mahalanobis distance criterion for surge characteristic frequency extraction of the centrifugal compressor[J]. Mechanical Systems and Signal Processing, 2023, 186 (3): 109836
|
2 |
HOU Y, ZHOU C, TIAN C, et al Acoustic feature enhancement in rolling bearing fault diagnosis using sparsity-oriented multipoint optimal minimum entropy deconvolution adjusted method[J]. Applied Acoustics, 2022, 201 (12): 109105
|
3 |
侯耀春, 周昶清, 武鹏, 等. 基于最大李雅普诺夫指数异常感知和CatBoost识别的机械密封失效模式层次化诊断框架[J]. 工程热物理学报, 2024, 45(1): 93-100. HOU Yaochun, ZHOU Changqing, WU Peng, et al. Hierarchical diagnostic framework of mechanical seal failure modes based on maximum Lyapunov exponent anomaly sensing and CatBoost model recognition [J]. Journal of Engineering Thermophysics . 2024, 45(1): 93-100.
|
4 |
丁康, 李巍华, 朱小勇. 齿轮及齿轮箱故障诊断实用技术[M]. 北京: 机械工业出版社, 2005.
|
5 |
ERRICHELLO R, MULLER J. Gearbox reliability collaborative gearbox 1 failure analysis report: December 2010-January 2011 [R]. United States: National Renewable Energy Lab, 2012.
|
6 |
WANG W Q, ISMAIL F, GOLNARAGHI M F Assessment of gear damage monitoring techniques using vibration measurements[J]. Mechanical Systems and Signal Processing, 2001, 15 (5): 905- 922
doi: 10.1006/mssp.2001.1392
|
7 |
HUANG W, LI S, FU X, et al. Transient extraction based on minimax concave regularized sparse representation for gear fault diagnosis [J]. Measurement . 2020, 151(2): 107273.
|
8 |
WANG S, HUANG W, ZHU Z K Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25 (4): 1299- 1320
doi: 10.1016/j.ymssp.2010.10.013
|
9 |
LI N, HUANG W, GUO W, et al Multiple enhanced sparse decomposition for gearbox compound fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (3): 770- 781
|
10 |
WANG S, SELESNICK I, CAI G, et al Nonconvex sparse regularization and convex optimization for bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (9): 7332- 7342
doi: 10.1109/TIE.2018.2793271
|
11 |
ZHOU Q, ZHANG Y, YI C, et al Convolutional sparse coding using pathfinder algorithm-optimized orthogonal matching pursuit with asymmetric Gaussian chirplet model in bearing fault detection[J]. IEEE Sensors Journal, 2021, 21 (16): 18132- 18145
doi: 10.1109/JSEN.2021.3086015
|
12 |
SELESNICK I Sparse regularization via convex analysis[J]. IEEE Transactions on Signal Processing, 2017, 65 (17): 4481- 4494
doi: 10.1109/TSP.2017.2711501
|
13 |
RAGUET H, LANDRIEU L Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[J]. SIAM Journal on Imaging Sciences, 2015, 8 (4): 2706- 2739
doi: 10.1137/15M1018253
|
14 |
ANTONI J, BORGHESANI P A statistical methodology for the design of condition indicators[J]. Mechanical Systems and Signal Processing, 2019, 114 (1): 290- 327
|
15 |
EDWARDS A W F. Likelihood [M]// Time series and statistics . New York: Springer, 1972: 126-129.
|
16 |
RICE J A. Mathematical statistics and data analysis [M]. Stamford: Cengage Learning, 2006.
|
17 |
LIN H, WU F, HE G Rolling bearing fault diagnosis using impulse feature enhancement and nonconvex regularization[J]. Mechanical Systems and Signal Processing, 2020, 142 (8): 106790
|
18 |
PHM Society. Public Data Sets. 2009 PHM challenge competition data set [DB/OL]. (2009-08-10)[2024-05-21]. https://phmsociety.org/public-data-sets.
|
19 |
HOU B, WANG D, KONG J, et al Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 174 (7): 109094
|
20 |
MCDONALD G L, ZHAO Q Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing, 2017, 82 (1): 461- 477
|
21 |
LOPEZ C, WANG D, NARANJO A, et al Box-cox-sparse-measures-based blind filtering: understanding the difference between the maximum kurtosis deconvolution and the minimum entropy deconvolution[J]. Mechanical Systems and Signal Processing, 2022, 165 (2): 108376
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|