Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2337-2344    DOI: 10.3785/j.issn.1008-973X.2023.11.021
航空航天技术     
中央传动齿轮箱复杂油路性能仿真
吴超琦(),罗健,周莹,娄鹏,尉玉
中国航发商用航空发动机有限责任公司,上海 200241
Performance simulation of complex oil circuit of inlet gearbox
Chao-qi WU(),Jian LUO,Ying ZHOU,Peng LOU,Yu YU
AECC Commercial Aircraft Engine Co. Ltd, Shanghai 200241, China
 全文: PDF(3454 KB)   HTML
摘要:

以某航空发动机中央传动齿轮箱复杂油路结构为研究对象,分别对“双通道多喷嘴”和“单通道多喷嘴”油路模型进行三维流动仿真分析并建立压力-体积流量数学模型. 计算结果表明:Realizable k-ε湍流模型能够有效捕捉“双通道多喷嘴”复杂油路结构的三维流动特性,滑油喷嘴喷孔的外部流线喷射位置和试验现象较吻合,计算精度较高;对供油压力为0.05~0.25 MPa的压力-体积流量曲线采用“外延法”方式,能够较好地预测供油压力为0.30 MPa时的体积流量,该值与仿真计算结果和设计要求均较吻合;随着油路入口供油压力增加,所有滑油喷嘴体积流量系数也增加,滑油喷嘴体积流量系数和油路内滑油雷诺数呈正相关关系;当供油压力为0.05~0.30 MPa时,“单通道多喷嘴”复杂油路模型的供油压力和体积流量呈二次函数关系.

关键词: 航空发动机齿轮箱复杂油路外延法体积流量系数    
Abstract:

A complex oil circuit structure of inlet gearbox of an aeroengine was taken as as the research object. The oil circuit models of two-channel multi nozzle and one-channel multi nozzle were simulated and analyzed respectively and the pressure-oil volume flow rate model was established. The calculation results showed that the Realizable k-ε turbulence model can effectively capture the three-dimensional flow characteristics of the complex oil circuit structure of two-channel multi nozzle. The external streamline injection position of the oil nozzle orifice was in good agreement with the experimental phenomenon. The calculation accuracy was high. The extension method was used to predict the oil volume flow rate under the oil supply pressure of 0.30 MPa for the pressure-oil volume flow rate curve with the oil supply pressure of 0.05 MPa to 0.25 MPa. This value was in good agreement with the simulation calculation results and design requirements. As the oil supply pressure at the inlet of the oil circuit increased, oil volume flow coefficient of of oil nozzles also increased. Oil volume flow coefficient of the oil nozzles was positively correlated with the Reynolds number. When the oil supply pressure was 0.05 MPa to 0.30 MPa, the oil supply pressure and oil volume flow rate of the one-channel multi nozzle complex oil circuit model were quadratic functions.

Key words: aero-engine    gearbox    complex oil circuit    extension method    oil volume flow coefficient
收稿日期: 2023-01-20 出版日期: 2023-12-11
CLC:  V 233.4  
基金资助: 国家自然科学基金资助项目(MJ-2017-D-24)
作者简介: 吴超琦(1989—),男,工程师,硕士,从事航空发动机滑油系统研究. orcid.org/0000-0001-6369-6189. E-mail: wcqecust@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴超琦
罗健
周莹
娄鹏
尉玉

引用本文:

吴超琦,罗健,周莹,娄鹏,尉玉. 中央传动齿轮箱复杂油路性能仿真[J]. 浙江大学学报(工学版), 2023, 57(11): 2337-2344.

Chao-qi WU,Jian LUO,Ying ZHOU,Peng LOU,Yu YU. Performance simulation of complex oil circuit of inlet gearbox. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2337-2344.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.021        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2337

图 1  中央传动齿轮箱的供油模型
图 2  油路模型流体域与体网格
管流段序号 dp/mm Lp/mm
管流段1 14.5 179.28
管流段2 11.3 363.46
管流段3 11.3 749.54
管流段4 11.3 246.74
表 1  “双通道多喷嘴”油路模型管流段信息
喷嘴序号 喷孔序号 dn/mm Ln/dn
喷嘴1 1.6 2.49
喷嘴2 0.8 2.47
喷嘴3 1.8 2.28
喷嘴4 1.8 2.28
喷嘴5 喷孔1 2.3 4.57
喷孔2 2.3 4.57
喷孔3 2.0 4.25
喷嘴6 喷孔4 2.3 4.57
喷孔5 2.3 4.57
喷孔6 2.0 4.25
表 2  “双通道多喷嘴”油路模型滑油喷嘴信息
p/MPa qV/(L·min?1) e/%
计算结果 试验结果
0.05 12.57 12.1 3.88
0.10 18.31 18.0 1.72
0.15 22.77 22.1 3.03
0.20 26.55 26.0 2.12
0.25 29.84 29.4 1.50
表 3  不同供油压力下体积流量计算和试验结果的对比
图 3  齿轮啮合区和传动杆花键处的外部流线
图 4  “双通道多喷嘴”油路模型的内部流线
图 5  “双通道多喷嘴”油路模型的喷孔外部流线
图 6  油路模型喷孔外部流线喷射位置
图 7  “双通道多喷嘴”油路模型的压力分布
部位 Δp/kPa pro/%
管流段1 1.65 0.14
管流段2 16.33 1.41
管流段3 23.81 2.05
管流段4 1.21 0.11
喷嘴1 291.16 25.09
喷嘴5 267.25 23.03
喷嘴6 265.67 22.90
机匣喷嘴 293.16 25.27
表 4  “双通道多喷嘴”油路模型的压力损失比例
图 8  不同供油压力下的体积流量系数
图 9  体积流量随供油压力变化的外延曲线
图 10  “单通道多喷嘴”油路模型压力分布和内部流线
图 11  体积流量随供油压力变化的拟合曲线
1 魏旭东 对航空发动机滑油系统的现状及未来发展分析[J]. 内燃机与配件, 2008, 10 (8): 95- 98
WEI Xu-dong Analysis of the current situation and future development of aviation engine oil lubrication systems[J]. Internal Combust Engine and Parts, 2008, 10 (8): 95- 98
2 杨昌祺, 蔚夺魁, 张茂强, 等 航空发动机中央传动失效故障分析[J]. 航空发动机, 2022, 48 (2): 83- 89
YANG Chang-qi, YU Duo-kui, ZHANG Mao-qiang, et al Failure analysis of central transmission system for an aero-engine[J]. Aeroengine, 2022, 48 (2): 83- 89
3 沈伟 航空发动机机械系统技术的探讨[J]. 内燃机与配件, 2022, 5 (1): 68- 70
SHEN Wei Discussion on aero engine mechanical system technology[J]. Internal Combustion Engine and Parts, 2022, 5 (1): 68- 70
4 梁作斌, 杜佳佳, 郭梅 齿轮风阻损失仿真及其实际应用[J]. 航空动力学报, 2017, 32 (6): 1419- 1424
LIANG Zuo-bin, DU Jia-jia, GUO Mei Simulation of gear windage losses and its application[J]. Journal of Aerospace Power, 2017, 32 (6): 1419- 1424
5 王翱, 谭武中 基于Flowmaster的行星齿轮箱喷射润滑系统设计与分析[J]. 润滑与密封, 2022, 47 (2): 102- 108
WANG Ao, TAN Wu-zhong Design and analysis of spray lubrication system for planetary gearbox based on flowmaster software[J]. Lubrication Engineering, 2022, 47 (2): 102- 108
6 葛玉柱, 雷雪梅, 张跃春, 等 采用高黏度润滑油的复杂管路齿轮箱润滑系统设计[J]. 润滑与密封, 2015, 40 (10): 122- 127
GE Yu-zhu, LEI Xue-mei, ZHANG Yue-chun, et al Design of gearbox lubrication system with complex pipeline and high viscosity lubricating oil[J]. Lubrication Engineering, 2015, 40 (10): 122- 127
7 王秋菊, 刘振刚, 乔恒稳, 等 高速重载圆柱齿轮弹流润滑数值分析[J]. 润滑与密封, 2022, 47 (3): 103- 109
WANG Qiu-ju, LIU Zhen-gang, QIAO Heng-wen, et al Numerical study of elasto hydrodynamic lubrication for high speed and heavy duty cylindrical gear[J]. Lubrication Engineering, 2022, 47 (3): 103- 109
8 FRANCO C, GORLA C Numerical modeling of the power losses in geared transmissions: windage churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort[J]. Tribology International, 2016, 103: 58- 68
doi: 10.1016/j.triboint.2016.06.046
9 DAI Y, MA F, ZHU X, et al Numerical simulation investigation on the windage power loss of a high-speed face gear drive[J]. Energies, 2019, 12: 2093- 2098
doi: 10.3390/en12112093
10 ZHU X, DAI Y, MA F CFD modelling and numerical simulation on windage power loss of aeronautic high-speed spiral bevel gears[J]. Simulation Modelling Practice and Theory, 2020, 103 (3): 102- 108
11 刘海鸥, 刘兴星 弧齿锥齿轮动应力计算分析及测试研究[J]. 机械传动, 2016, 41 (9): 111- 114
LIU Hai-ou, LIU Xing-xing Numerical analysis and test research of the dynamic stress of spiral bevel gear[J]. Journal of Mechanical Transmission, 2016, 41 (9): 111- 114
12 林基恕. 航空发动机设计手册第12册传动及润滑系统: 第1版[M]. 北京: 航空工业出版社, 2002.
13 SHAHEED R, MOHAM A, KHEIRK G H A comparison of standard kε and realizable kε turbulence models in curved and confluent channels [J]. Environmental Fluid Mechanics, 2019, 19: 543- 568
doi: 10.1007/s10652-018-9637-1
14 陈长业, 李济顺, 余永健, 等 喷嘴结构对油气润滑环状流特性的影响[J]. 设计与研究, 2019, 2 (13): 64- 69
CHEN Chang-ye, LI Ji-shun, YU Yong-jian, et al Effect of nozzle structure on annular flow characteristics in oil-air lubrication[J]. Design and Research, 2019, 2 (13): 64- 69
15 El-GHAFOUR SA, El-GHANDOUR M, MIKHAEL N N Three-dimensional computational fluid dynamics simulation of stirling engine[J]. Energy Conversion and Management, 2019, 180 (15): 533- 549
16 王莹. 油气润滑系统中喷嘴的工作性能研究[D]. 北京: 北方工业大学, 2015: 16.
WANG Ying. Research on the working performances of a nozzle in the oil-air lubrication system[D]. Beijing: North China University of Technology, 2015: 16.
17 VIVEK K S, AKSHOY R P, ANUJ J. Capturing the wall turbulence in CFD simulation of human respiratory tract[J], Mathematics and Computers in Simulation, 2019, 160: 23-38.
18 胡青松. 基于直齿圆柱齿轮传动的油气润滑系统研究[D]. 重庆: 重庆理工大学, 2019: 6.
HU Qing-song. The research of oil-air lubrication system based on the spur gear transmission [D]. Chongqing: Chongqing University of Technology, 2019: 6.
19 ARASH B, HOSSEIN S Numerical study of asymmetrical oscillation of a bubble inside a rigid blood vessel under ultrasonic pressure using CFD, SIMPLE Algorithm[J]. American Journal of Fluid Dynamics, 2017, 7 (2): 49- 55
20 曾玉红. 流体力学: 第1版[M]. 武汉: 武汉理工大学出版社, 2019.
21 孙致月, 陈翾, 赵世明 基于CFD技术的管内流动精细仿真方法[J]. 中北大学学报: 自然科学版, 2017, 38 (5): 599- 604
SUN Zhi-yue, CHEN Xuan, ZHAO Shi-ming An accurate simulation method of pipe flow based on CFD[J]. Journal of North University of China: Natural Science Edition, 2017, 38 (5): 599- 604
[1] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[2] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[3] 王延忠,杨凯,齐荣华,陈燕燕,李菲,高浩. 航空发动机叶轮超高周疲劳寿命预测方法[J]. 浙江大学学报(工学版), 2019, 53(4): 621-627.
[4] 张俊红, 王杰, 鲁鑫, 戴胡伟, 马梁. 考虑封严涂层的航空发动机叶片碰摩过程[J]. 浙江大学学报(工学版), 2018, 52(5): 980-987.
[5] 祝文颖, 冯志鹏. 基于迭代Hilbert变换的行星齿轮箱振动信号分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1587-1595.