Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 1060-1071    DOI: 10.3785/j.issn.1008-973X.2024.05.019
机械工程     
动车组锥齿轮箱飞溅润滑特性及箱体结构改进
邵帅1(),张开林1,*(),姚远1,刘逸1,王正洋2
1. 西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610000
2. 苏州舜云工程软件有限公司 仿真部,江苏 苏州 215000
Splash lubrication characteristics and structure improvement of spiral bevel gearbox for electrical multiple unit
Shuai SHAO1(),Kailin ZHANG1,*(),Yuan YAO1,Yi LIU1,Zhengyang WANG2
1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610000, China
2. Simulation Department, Suzhou ShonCloud Engineering Software Limited Company, Suzhou 215000, China
 全文: PDF(4124 KB)   HTML
摘要:

为了分析动车组齿轮箱的润滑机理,以某型螺旋锥齿轮传动齿轮箱为研究对象,运用移动粒子半隐式(MPS)法建立高精度的流场仿真模型. 引入薄膜流动模型,对无滑移壁面边界条件进行改进,使移动粒子半隐式法具有预测液膜流动特性的功能. 研究输入齿轮转速、初始润滑油量对箱体内壁和齿轮表面的润滑油覆盖率、油膜分布特性及功率损失的影响. 结果表明,箱体内壁面的润滑油覆盖率和液膜厚度主要受润滑油飞溅效应的影响,齿轮表面受到润滑油飞溅效应和自身运动的共同影响. 功率损失分析显示,功率损失与输入齿轮转速和初始润滑油油量均呈正相关关系,对高转速更敏感. 对箱体结构进行改进,消除箱体凸台,扩大与输出齿轮的距离,该措施可以显著改善齿轮箱的润滑条件.

关键词: 齿轮箱飞溅润滑薄膜流动油膜厚度功率损失    
Abstract:

A high-precision flow field simulation model was established by using the moving particle semi-implicit (MPS) method in order to analyze the lubrication mechanism of electrical multiple unit gearbox, taking a certain type of spiral bevel gear transmission gearbox as the research object. The film flow model was introduced to improve the non-slip wall boundary conditions so that the MPS has the function of predicting the flow characteristics of the liquid film. The effects of input gear rotating speed and initial lubricating oil volume on the lubricating oil coverage rate, oil film distribution characteristics and power loss of the inner wall of the gearbox and the gear surface were analyzed. Results show that the lubricating oil coverage and liquid film thickness on the inner wall of the gearbox are mainly affected by the splash effect of lubricating oil, and the gear surface is affected by the splash effect of lubricating oil and its own motion. The power loss analysis indicates that the power loss is positively correlated with the input gear rotating speed and the initial lubricating oil volume, and is more sensitive to high rotating speed. The box structure is improved, the box boss is eliminated and the distance from the output gear is expanded, which can significantly improve the lubrication conditions of the gearbox.

Key words: gearbox    splash lubrication    thin film flow    oil film thickness    power loss
收稿日期: 2023-04-24 出版日期: 2024-04-26
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(U2268211);四川省自然科学基金资助项目(2022NSFSC0034,2022NSFSC0034);大功率交流传动电力机车系统集成国家重点实验室开放课题(R111720H01385).
通讯作者: 张开林     E-mail: swjtushaoshuai@163.com;zhangkailin@swjtu.cn
作者简介: 邵帅(1993—),男,博士生,从事动车组齿轮箱润滑与传热的研究. orcid.org/0000-0001-5076-3477. E-mail:swjtushaoshuai@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邵帅
张开林
姚远
刘逸
王正洋

引用本文:

邵帅,张开林,姚远,刘逸,王正洋. 动车组锥齿轮箱飞溅润滑特性及箱体结构改进[J]. 浙江大学学报(工学版), 2024, 58(5): 1060-1071.

Shuai SHAO,Kailin ZHANG,Yuan YAO,Yi LIU,Zhengyang WANG. Splash lubrication characteristics and structure improvement of spiral bevel gearbox for electrical multiple unit. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1060-1071.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.019        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1060

图 1  核函数作用模型
图 2  薄膜流动模型的示意图
图 3  自由液面判别的示意图
图 4  边界粒子布置的示意图
图 5  齿轮箱部件的分解图
名称输入齿轮输出齿轮
齿面类型格里森式格里森式
齿数2255
模数/mm9.29.2
齿宽/mm8282
压力角/(°)2020
螺旋角/(°)3030
表 1  动车组齿轮箱的锥齿轮参数
参数数值
ρ15/(kg·m?3867
ν40/(mm2·s?1116
ν100/(mm2·s?116.6
表 2  润滑油75W-90的物性参数
θ/℃ρ/ (kg·m?3)ν/ (mm2·s?1)
40852116
6084050.2
8082825.9
10081616.6
表 3  不同温度下润滑油的属性
工况序号nd/(r·min?1)V0/L箱体结构改进
160015改进前
21 20015
31 80015
42 40015
53 00015
61 20012
71 20018
81 20021
91 20024
1060015改进后
113 00015
表 4  齿轮箱内流场仿真计算工况表
参数数值
Z1/Z224/24
m/mm6.5
B/mm40
β/(°)35
α/(°)20
Σ/(°)90
表 5  试验齿轮箱齿轮副的参数
图 6  螺旋锥齿轮箱内油液分布的对比
图 7  螺旋锥齿轮箱的搅油功率损失对比
图 8  齿轮箱的瞬时油液分布
图 9  齿轮箱的瞬时油液覆盖率
图 10  齿轮箱的瞬时油膜分布
图 11  不同转速下的粒子数密度分布
图 12  不同转速下箱体内壁油膜的分布
图 13  不同转速下齿轮表面油膜的分布
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
16000.0562400.88925.86
21 2000.1934801.22986.07
31 8000.3477201.556182.64
42 4000.40496011.5661 264.25
53 0000.8111 20047.7826 258.77
表 6  不同转速下的搅油阻力矩和功率损失
图 14  齿轮箱在不同转速下的功率损失
图 15  不同初始油量下的粒子数密度分布
图 16  不同初始油量下箱体内壁油膜的分布
图 17  不同初始油量下齿轮表面油膜的分布
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
61 2000.0584800.64239.57
21 2000.1934801.22986.07
71 2000.3234801.761129.10
81 2000.4534802.499182.48
91 2000.6724803.434257.08
表 7  不同初始油量下的搅油阻力矩和功率损失
图 18  齿轮箱在不同初始油量下的功率损失
图 19  低转速、箱体结构改进前的流场特性
图 20  低转速、箱体结构改进后的流场特性
图 21  高转速、箱体结构改进前的流场特性
图 22  高转速、箱体结构改进后的流场特性
工况nd/(r·min?1)Td/(N·m)ns/(r·min?1)Ts/(N·m)Ploss/W
16000.0562400.88925.86
106000.0472400.65219.33
53 0000.8111 20047.7826 258.77
113 0000.7561 20041.6975 476.91
表 8  箱体结构改进前、后的搅油阻力矩和功率损失
1 LIU H, JURKSCHAT T, LOHNER T, et al Determination of oil distribution and churning power loss of gearboxes by finite volume CFD method[J]. Tribology International, 2017, 109: 346- 354
doi: 10.1016/j.triboint.2016.12.042
2 LIU H, JURKSCHAT T, LOHNER T, et al Detailed investigations on the oil flow in dip-lubricated gearboxes by the finite volume CFD method[J]. Lubricants, 2016, 6 (2): 47
3 MASTRONE M N, HARTONO E A, CHERNORAY V, et al Oil distribution and churning losses of gearboxes: Experimental and numerical analysis[J]. Tribology International, 2020, 151: 106496
doi: 10.1016/j.triboint.2020.106496
4 LIU H, ARFAOUI G, STANIC M, et al Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part J. Journal of Engineering Tribology, 2019, 233 (4): 74- 86
5 GROENENBOOM P H L, METTICHI M Z, GARGOURI Y. Simulating oil flow for gearbox lubrication using smoothed particle hydrodynamics [C]// Proceedings of the International Conference on Gears . Garching: [s. n. ], 2015: 377-386.
6 刘桓龙, 谢迟新, 李大法, 等 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报:工学版, 2020, 55 (5): 876- 886
LIU Huanlong, XIE Chixin, LI Dafa, et al Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of Zhejiang University: Engineering Science, 2020, 55 (5): 876- 886
7 DUO D, CHEN F, LIU J, et al Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63 (1): 182- 193
doi: 10.1080/10402004.2019.1682212
8 DENG X, WANG S, HAMMI Y, et al A combined experimental and computational study of lubrication mechanism of high precision reducer adopting a worm gear drive with complicated space surface contact[J]. Tribology International, 2020, 146: 106261
doi: 10.1016/j.triboint.2020.106261
9 DENG X, WANG S, WANG S, et al Lubrication mechanism in gearbox of high-speed railway trains[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2020, 14 (4): JAMDSM0054
doi: 10.1299/jamdsm.2020jamdsm0054
10 谢迟新, 刘桓龙, 贾瑞河, 等 基于MPS方法的二级齿轮箱飞溅润滑特性研究[J]. 中国机械工程, 2021, 32 (15): 1827- 1835
XIE Chixin, LIU Huanlong, JIA Ruihe, et al Research on splash lubrication characteristics of two-stage gearbox based on MPS method[J]. China Mechanical Engineering, 2021, 32 (15): 1827- 1835
doi: 10.3969/j.issn.1004-132X.2021.15.008
11 冯成程, 董庆兵, 魏静, 等 高速动车组齿轮箱内部流场仿真分析及搅油损失计算[J]. 润滑与密封, 2022, 47 (1): 101- 110
FENG Chengcheng, DONG Qingbing, WEI Jing, et al Simulation and analysis of internal flow field in gearbox of high-speed emus and calculation of churning power loss[J]. Lubrication Engineering, 2022, 47 (1): 101- 110
doi: 10.3969/j.issn.0254-0150.2022.01.015
12 PENG Q, GUI L, FAN Z Numerical and experimental investigation of splashing oil flow in a hypoid gearbox[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12 (1): 324- 333
doi: 10.1080/19942060.2018.1432506
13 HU X, JIANG Y, LUO C, et al Churning power losses of a gearbox with spiral bevel geared transmission[J]. Tribology International, 2019, 129: 398- 406
doi: 10.1016/j.triboint.2018.08.041
14 JIANG Y, HU X, HONG S, et al Influences of an oil guide device on splash lubrication performance in a spiral bevel gearbox[J]. Tribology International, 2019, 136: 155- 164
doi: 10.1016/j.triboint.2019.03.048
15 LU F, WANG M, PAN W, et al CFD-based investigation of lubrication and temperature characteristics of an intermediate gearbox with splash lubrication[J]. Applied Sciences, 2021, 11 (1): 352
16 张天纲. 移动粒子半隐式方法理论及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2019: 4-5.
17 张凯, 孙中国, 席光 移动粒子半隐式法核函数特征对压力求解稳定性的影响[J]. 西安交通大学学报, 2019, 53 (9): 1- 6
ZHANG Kai, SUN Zhongguo, XI Guang Influence of the kernel function characteristics on the stability of pressure solution of moving particle semi-implicit method[J]. Journal of Xi’an Jiao Tong University, 2019, 53 (9): 1- 6
doi: 10.7652/xjtuxb201909001
18 VITA P, GSCHAIDER B F W, PRIELING D, et al. Thin film flow simulation on a rotating disc [C]// European Congress on Computational Methods in Applied Sciences and Engineering . Vienna: [s. n.], 2012.
19 徐刚. 移动粒子半隐式法算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
XU Gang. Research on algorithm of moving particle simi-implicit method [D]. Harbin: Harbin Engineering University, 2007.
20 郭栋, 罗冬源, 陈芳超 基于MPS方法的齿轮箱内部型腔结构搅油损失仿真分析[J]. 机械传动, 2022, 46 (3): 24- 30
GUO Dong, LUO Dongyuan, CHEN Fangchao Simulation analysis of churning loss of internal cavity structure of gearbox based on MPS method[J]. Journal of Mechanical Transmission, 2022, 46 (3): 24- 30
21 MOURA C A, KUBRUSLY C S. The Courant-Friedrichs-Lewy (CFL) condition: 80 years after its discovery [M]. Boston: Birkhäuser Basel, 2012.
22 AGMA. Effect of lubrication on gear surface distress: AGMA925-A03 [S]. Alexandria, USA: AGMA, 2003: 10.
23 姜义尧, 胡小舟, 孙凯 某型直升机中减速器飞溅润滑流场特性分析[J]. 航空动力学报, 2018, 33 (12): 3032- 3040
JIANG Yiyao, HU Xiaozhou, SUN Kai Analysis of flow field characteristics of medium reducer with splash lubrication in a certain helicopter[J]. Journal of Aerospace Power, 2018, 33 (12): 3032- 3040
24 李晏, 皮彪, 王叶枫, 等 基于移动粒子半隐式法的齿轮搅油损失分析与试验验证[J]. 同济大学学报:自然科学版, 2018, 46 (3): 368- 372
LI Yan, PI Biao, WANG Yefeng, et al Analysis and validation of churning loss of helical gear based on moving particle semi-implicit method[J]. Journal of Tongji University: Nature Science, 2018, 46 (3): 368- 372
[1] 吴超琦,罗健,周莹,娄鹏,尉玉. 中央传动齿轮箱复杂油路性能仿真[J]. 浙江大学学报(工学版), 2023, 57(11): 2337-2344.
[2] 温竹鹏,陈捷,刘连华,焦玲玲. 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报(工学版), 2022, 56(6): 1212-1219.
[3] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[4] 曹伟,蒲伟,万一品,王迪,刘存波. 任意卷吸速度矢量点接触摩擦系数简化计算方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2307-2314.
[5] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[6] 祝文颖, 冯志鹏. 基于迭代Hilbert变换的行星齿轮箱振动信号分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1587-1595.
[7] 王彬, 周华, 杨华勇. 轴向柱塞泵平面配流副的摩擦转矩特性试验研究[J]. J4, 2009, 43(11): 2091-2095.