Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (7): 1523-1531    DOI: 10.3785/j.issn.1008-973X.2025.07.020
机械与能源工程     
基于因果解耦的域自适应滚动轴承故障诊断
黄爱颖(),李晓辉,孙淑娴,朱逸群*()
国网天津市电力公司 营销服务中心,天津 300160
Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis
Aiying HUANG(),Xiaohui LI,Shuxian SUN,Yiqun ZHU*()
Marketing Service Center, State Grid Tianjin Electric Power Company, Tianjin 300160, China
 全文: PDF(1530 KB)   HTML
摘要:

为了提高域自适应故障诊断方法在无标签目标域上的泛化能力,提出发掘振动信号中潜在因果关系的故障诊断模型. 基于序列变分自编码器(VAE),利用故障标签学习与故障类型相关的稳健特征表示. 在域标签的引导下分离出与故障无关但反映数据域分布特性的因素,逐步将振动信号进行因果解耦. 重新构建序列VAE的证据下界(ELBO),以有效引导解耦过程. 结合域自适应技术,拉近源域和目标域共有故障特征在特征空间中的距离,提高特征编码器所学特征的泛化性能. 在CWRU和IMS数据集上的实验结果表明,因果网络的特征解耦能力可与域自适应方法互为补充,增强故障诊断模型在域自适应任务中的性能.

关键词: 滚动轴承因果解耦变分自编码器(VAE)域自适应故障诊断    
Abstract:

To improve the generalization capability of domain adaptive fault diagnosis methods on unlabeled target domains, a fault diagnosis model to uncover the latent causal relationships within vibration signals was proposed. Based on a sequential variational autoencoder (VAE), robust feature representations associated with fault types were learned using fault labels. Guided by the principles of domain labels, factors unrelated to the faults yet reflective of the domain’s data distribution were separated, thereby progressively decoupling the vibration signals causally. The evidence lower bound (ELBO) of the sequential VAE was restructured to effectively guide the decoupling process. By incorporating domain adaptation techniques, the shared fault features’ distance between the source and target domains was brought close in the feature space, enhancing the generalization of the features learned by the encoder. Experimental results on the CWRU and IMS datasets show that the feature decoupling capability of the causal network complements domain adaptation methods, improving the performance of the fault diagnosis model in domain adaptation tasks.

Key words: rolling bearing    causal disentanglement    variational autoencoder (VAE)    domain adaptation    fault diagnosis
收稿日期: 2024-06-20 出版日期: 2025-07-25
CLC:  TP 391  
基金资助: 营服-研发2023-03.
通讯作者: 朱逸群     E-mail: haiying2151@126.com;h.h.h1@163.com
作者简介: 黄爱颖(1970—),男,高级工程师,从事故障诊断,电力营销研究. orcid.org/0009-0001-1507-5801. E-mail:haiying2151@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄爱颖
李晓辉
孙淑娴
朱逸群

引用本文:

黄爱颖,李晓辉,孙淑娴,朱逸群. 基于因果解耦的域自适应滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2025, 59(7): 1523-1531.

Aiying HUANG,Xiaohui LI,Shuxian SUN,Yiqun ZHU. Causal disentanglement-based domain adaptation for rolling bearing fault diagnosis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1523-1531.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1523

图 1  故障诊断中的因果关系图
图 2  解耦网络结构
图 3  长短时神经网络的神经元结构
图 4  域自适应学习流程图
负载条件$l$/Wv/(r·min?1)N1
101 7971 114
2745.701 7721 313
31491.391 7501 313
42237.101 7301 315
表 1  CWRU数据集工作负载参数
迁移任务A/%
BASEDDC[9]CORAL[10]DANN[11]CDAN[13]SFDA[14]本研究
[1]-[2]96.53 ± 0.1295.71 ± 0.4194.52 ± 0.5196.43 ± 0.2397.59 ± 0.1396.83 ± 0.7998.63 ± 0.07
[1]-[3]92.84 ± 0.4995.48 ± 0.2592.34 ± 1.1096.24 ± 0.5399.17 ± 0.1798.63 ± 0.8499.39 ± 0.13
[1]-[4]88.91 ± 0.9392.19 ± 0.5891.56 ± 2.0897.82 ± 0.3698.32 ± 0.2196.25 ± 0.6698.69 ± 0.19
[2]-[1]98.82 ± 0.0798.96 ± 0.4398.33 ± 0.2498.65 ± 0.2099.10 ± 0.2698.25 ± 0.4599.89 ± 0.06
[2]-[3]98.56 ± 0.2197.79 ± 0.2698.82 ± 0.0999.37 ± 0.1899.53 ± 0.0697.22 ± 0.7699.64 ± 0.09
[2]-[4]92.67 ± 0.1893.48 ± 0.9194.72 ± 1.6199.15 ± 0.3298.97 ± 0.2198.62 ± 0.4799.23 ± 0.05
[3]-[1]96.31 ± 0.4296.99 ± 0.7297.53 ± 0.1492.85 ± 0.7199.12 ± 0.1396.09 ± 0.7799.15 ± 0.08
[3]-[2]97.15 ± 0.2998.51 ± 0.4499.49 ± 0.1195.47 ± 0.9398.87 ± 0.2297.53 ± 0.4999.92 ± 0.03
[3]-[4]98.88 ± 0.0699.22 ± 0.3498.28 ± 0.0799.64 ± 0.0999.95 ± 0.1398.85 ± 0.39100.0 ± 0.00
[4]-[1]81.09 ± 1.1384.35 ± 0.8188.37 ± 0.1388.34 ± 0.4592.23 ± 0.1895.62 ± 0.4297.42 ± 0.12
[4]-[2]84.56 ± 0.7589.61 ± 0.7490.43 ± 0.3887.48 ± 0.7391.43 ± 0.6193.26 ± 0.7295.34 ± 0.21
[4]-[3]95.93 ± 0.5396.49 ± 0.6397.03 ± 0.1697.42 ± 0.1698.81 ± 0.0997.31 ± 0.5998.82 ± 0.16
表 2  不同方法在12种迁移任务中的轴承故障诊断准确率
图 5  跨数据集迁移性能比较
图 6  不同方法故障诊断结果的混淆矩阵
图 7  不同故障方法的分布随机领域嵌入可视化结果
实验编号$ {L_{{\text{ELBO}}}} $$ {L_{{\text{MK-MMD}}}} $$ {L_{\text{d}}} $A/%
1???64.63
2?+?75.42
3+?+79.62
4+++85.31
表 3  损失函数对诊断性能的影响
1 高萍. 基于可靠性分析的复杂设备预防性维修决策研究 [D]. 北京: 清华大学, 2008: 1–119.
GAO Ping. The research on preventive maintenance decision of complex equipment based on reliability analysis [D]. Beijing: Tsinghua University, 2008: 1–119.
2 GAO Z, CECATI C, DING S X A survey of fault diagnosis and fault-tolerant techniques: Part II: fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (6): 3768- 3774
3 YIN S, DING S X, XIE X, et al A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (11): 6418- 6428
doi: 10.1109/TIE.2014.2301773
4 CAI B, HUANG L, XIE M Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (5): 2227- 2240
doi: 10.1109/TII.2017.2695583
5 周策, 白斌, 叶楠 自适应粒子群优化支持向量回归的工程系统可靠性预测[J]. 机械工程学报, 2023, 59 (14): 328- 338
ZHOU Ce, BAI Bin, YE Nan Reliability prediction of engineering system based on adaptive particle swarm optimization support vector regression[J]. Journal of Mechanical Engineering, 2023, 59 (14): 328- 338
doi: 10.3901/JME.2023.14.328
6 HAN Y, TANG B, DENG L An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes[J]. Computers in Industry, 2019, 107: 50- 58
doi: 10.1016/j.compind.2019.01.012
7 AN Z, LI S, WANG J, et al A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network[J]. ISA Transactions, 2020, 100: 155- 170
doi: 10.1016/j.isatra.2019.11.010
8 PEI X, ZHENG X, WU J Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2515611
9 TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance [EB/OL]. (2014–12–10)[2024–06–10]. https://arxiv.org/pdf/1412.3474.
10 SUN B, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation [C]// Computer Vision – ECCV 2016 Workshops. [S.l.]: Springer, 2016: 443–450.
11 GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [M]// CSURKA G. Domain adaptation in computer vision applications. [S.l.]: Springer, 2017: 189–209.
12 CHEN Z, HE G, LI J, et al Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (11): 8702- 8712
doi: 10.1109/TIM.2020.2995441
13 LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation [C]// Proceedings of The 32nd International Conference on Neural Information Processing Systems. Montreal: [s.n.], 2018: 1647–1657.
14 JIAO J, LI H, ZHANG T, et al Source-free adaptation diagnosis for rotating machinery[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (9): 9586- 9595
doi: 10.1109/TII.2022.3231414
15 LI Y, SONG Y, JIA L, et al Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2833- 2841
doi: 10.1109/TII.2020.3008010
16 ZHAO K, JIANG H, WANG K, et al Joint distribution adaptation network with adversarial learning for rolling bearing fault diagnosis[J]. Knowledge-Based Systems, 2021, 222: 106974
doi: 10.1016/j.knosys.2021.106974
17 RAS G, XIE N, VAN GERVEN M, et al Explainable deep learning: a field guide for the uninitiated[J]. Journal of Artificial Intelligence Research, 2022, 73: 329- 396
doi: 10.1613/jair.1.13200
18 LOCATELLO F, BAUER S, LUCIC M, et al. Challenging common assumptions in the unsupervised learning of disentangled representations [C]// International Conference on Learning Representations. Long Beach: [s.n.]. 2019, 97: 4114–4124.
19 KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. (2022–12–10)[2024–06–10]. https://arxiv.org/pdf/1312.6114v11.
20 HIGGINS I, MATTHEY L, PAL A, et al. β-VAE: learning basic visual concepts with a constrained variational framework [C]// International Conference on Learning Representations. Puerto Rico: [s.n.]. 2016: 1–13.
21 LI J, WU B, SUN X, et al. Causal hidden Markov model for time series disease forecasting [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 12100–12109.
22 LONG M, CAO Y, CAO Z, et al Transferable representation learning with deep adaptation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (12): 3071- 3085
doi: 10.1109/TPAMI.2018.2868685
23 PEARL J. Causality: models, reasoning and inference [M]. New York: Cambridge University Press, 2000: 1–478.
24 HOU B, YANG J, WANG P, et al LSTM-based auto-encoder model for ECG arrhythmias classification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (4): 1232- 1240
doi: 10.1109/TIM.2019.2910342
25 ZHAO Z, ZHANG Q, YU X, et al Applications of unsupervised deep transfer learning to intelligent fault diagnosis: a survey and comparative study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525828
26 SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
27 QIU H, LEE J, LIN J, et al Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289 (4/5): 1066- 1090
28 RANDALL R B, ANTONI J Rolling element bearing diagnostics: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25 (2): 485- 520
doi: 10.1016/j.ymssp.2010.07.017
[1] 周昶清,侯耀春,武鹏,杨帅,吴大转. 自适应齿轮箱稀疏表示原子构建方法[J]. 浙江大学学报(工学版), 2025, 59(5): 1018-1030.
[2] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[3] 韩康,战洪飞,余军合,王瑞. 基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2024, 58(6): 1285-1295.
[4] 耿志强,陈威,马波,韩永明. 基于连续小波卷积神经网络的轴承智能故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2069-2075.
[5] 吴兰,崔全龙. 基于伪标签细化和语义对齐的异构域自适应[J]. 浙江大学学报(工学版), 2023, 57(9): 1876-1884.
[6] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[7] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[8] 吴兰,王涵,李斌全,李崇阳,孔凡士. 基于自监督任务的多源无监督域适应法[J]. 浙江大学学报(工学版), 2022, 56(4): 754-763.
[9] 鲁建厦,金敬豪,赵文彬,陈青丰,江伟光. 基于候鸟算法的批量流混合装配流水车间调度[J]. 浙江大学学报(工学版), 2022, 56(11): 2135-2144.
[10] 牛英杰,苏燕辰,程敦诚,廖家,赵海波,高永强. 高铁接触网U型抱箍螺母故障检测算法[J]. 浙江大学学报(工学版), 2021, 55(10): 1912-1921.
[11] 金列俊,詹建明,陈俊华,王涛. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版), 2020, 54(3): 467-474.
[12] 谢乐,衡熙丹,刘洋,蒋启龙,刘东. 基于线性判别分析和分步机器学习的变压器故障诊断[J]. 浙江大学学报(工学版), 2020, 54(11): 2266-2272.
[13] 林京京,沈艳霞. 永磁同步电机驱动系统电流传感器容错控制[J]. 浙江大学学报(工学版), 2019, 53(9): 1815-1825.
[14] 张政,周学军,王希晨,周媛媛. 缆系水下信息网恒流远供系统短路故障诊断及区间定位方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1190-1197.
[15] 童水光, 张依东, 徐剑, 从飞云. 频带多尺度复合模糊熵及其在轴承故障诊断中的应用[J]. 浙江大学学报(工学版), 2018, 52(8): 1509-1516.