|
|
基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别 |
刘欢1( ),李云红1,*( ),张蕾涛1,郭越2,苏雪平1,朱耀麟1,侯乐乐1 |
1. 西安工程大学 电子信息学院,陕西 西安 710048 2. 山西大学 生命科学学院,山西 太原 030031 |
|
Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation |
Huan LIU1( ),Yunhong LI1,*( ),Leitao ZHANG1,Yue GUO2,Xueping SU1,Yaolin ZHU1,Lele HOU1 |
1. School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China 2. School of Life Science, Shanxi University, Taiyuan 030031, China |
引用本文:
刘欢,李云红,张蕾涛,郭越,苏雪平,朱耀麟,侯乐乐. 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报(工学版), 2024, 58(9): 1757-1767.
Huan LIU,Yunhong LI,Leitao ZHANG,Yue GUO,Xueping SU,Yaolin ZHU,Lele HOU. Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1757-1767.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.001
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1757
|
1 |
翟肇裕, 曹益飞, 徐焕良, 等 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52 (7): 1- 18 ZHAI Zhaoyu, CAO Yifei, XU Huanliang, et al Review of key techniques for crop disease and pest detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (7): 1- 18
|
2 |
孟子恒, 朱海燕, 刘学忠 农业产业集聚对农业经济增长的影响研究: 基于苹果产业的实证分析[J]. 中国农业资源与区划, 2022, 43 (2): 231- 239 MENG Ziheng, ZHU Haiyan, LIU Xuezhong Research on the impact of agricultural industry agglomeration on agricultural economic growth: an empirical analysis based on apple industry[J]. China Agricultural Resources and Zoning, 2022, 43 (2): 231- 239
|
3 |
岳喜申 深度学习在农作物病害识别中的研究进展[J]. 安徽农学通报, 2024, 30 (6): 100- 103 YUE Xishen Research progress of deep learning in crop disease identification[J]. Anhui Agricultural Bulletin, 2024, 30 (6): 100- 103
|
4 |
盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118−2129. SHENG Shuai, DUAN Xianhua, HU Weikang, et al. Dynamic-YOLOX: apple leaf disease detection model under complex background [J]. Computer Science and Exploration , 2024, 18(8): 2118−2129.
|
5 |
李佼隆. 基于LeafGAN的数据增强及木薯叶片病害分类识别系统研究[D]. 雅安: 四川农业大学, 2023. LI Jiaolong. Research on data enhancement and cassava leaf disease classification and identification system based on LeafGAN [D]. Yaan: Sichuan Agricultural University, 2023.
|
6 |
李云红, 张蕾涛, 李丽敏, 等 基于CycleGAN-IA方法和M-ConvNext网络的苹果叶片病害图像识别[J]. 农业机械学报, 2024, 55 (4): 204- 212 LI Yunhong, ZHANG Leitao, LI Limin, et al Apple leaf disease image recognition based on CycleGAN-IA method and M-ConvNet network[J]. Journal of Agricultural Machinery, 2024, 55 (4): 204- 212
|
7 |
ZHANG Y, HUANG S, ZHOU G, et al Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network[J]. Computers and Electronics in Agriculture, 2023, 205: 107605
doi: 10.1016/j.compag.2022.107605
|
8 |
HAQUE M A, MARWAHA S, ARORA A, et al A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize[J]. Frontiers in Plant Science, 2022, 13: 1077568
doi: 10.3389/fpls.2022.1077568
|
9 |
MA Z, WANG Y, ZHANG T, et al Maize leaf disease identification using deep transfer convolutional neural networks[J]. International Journal of Agricultural and Biological Engineering, 2022, 15 (5): 187- 195
doi: 10.25165/j.ijabe.20221505.6658
|
10 |
YANG L, YU X, ZHANG S, et al GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases[J]. Computers and Electronics in Agriculture, 2023, 204: 107543
doi: 10.1016/j.compag.2022.107543
|
11 |
ELFATIMI E, ERVIGIT R, ELFATIMI L Beans leaf diseases classification using mobilenet models[J]. IEEE Access, 2022, 10: 9471- 9482
doi: 10.1109/ACCESS.2022.3142817
|
12 |
LEE S H, CHAN C S, WILKIN P, et al. Deep-plant: plant identification with convolutional neural networks [C]// 2015 IEEE International Conference on Image Processing . Quebec City: IEEE, 2015: 452−456.
|
13 |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience, 2016, (1): 1- 11
|
14 |
BRAHIMI M, BOUKHALFA K, MOUSSAOUI A Deep learning for tomato diseases: classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017, 31 (4): 299- 315
doi: 10.1080/08839514.2017.1315516
|
15 |
FERENTINOS K P Deep learning models for plant disease detection and diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311- 318
doi: 10.1016/j.compag.2018.01.009
|
16 |
HASSAN S M, MAJI A K, JASINSKI M, et al Identification of plant-leaf diseases using CNN and transfer-learning approach[J]. Electronics, 2021, 10 (12): 1388
doi: 10.3390/electronics10121388
|
17 |
彭玉寒, 李书琴 基于重参数化MobileNetV2的农作物叶片病害识别模型[J]. 农业工程学报, 2023, 39 (17): 132- 140 PENG Yuhan, LI Shuqin Identification model of crop leaf diseases based on re-parameterized MobileNetV2[J]. Journal of Agricultural Engineering, 2023, 39 (17): 132- 140
|
18 |
李大华, 仲婷, 王笋, 等 基于改进ShuffleNet v2的轻量化番茄叶片病害识别[J]. 江苏农业科学, 2024, 52 (3): 220- 228 LI Dahua, ZHONG Ting, WANG Sun, et al Identification of light tomato leaf diseases based on improved ShuffleNet v2[J]. Jiangsu Agricultural Sciences, 2024, 52 (3): 220- 228
|
19 |
CHEN J, ZHANG D, ZEB A, et al Identification of rice plant diseases using lightweight attention networks[J]. Expert Systems with Applications, 2021, 169: 114514
doi: 10.1016/j.eswa.2020.114514
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2016: 770−778.
|
21 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C ]// IEEE Conference on Computer Vision and Pattern recognition . Columbus: IEEE, 2016: 2818−2826.
|
22 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 4700−4708.
|
23 |
HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3 [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 1314−1324.
|
24 |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks [C]// International Conference on Machine Learning . Long Beach: IEEE, 2019: 6105−6114.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|