Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (7): 1539-1546    DOI: 10.3785/j.issn.1008-973X.2025.07.022
机械与能源工程     
狭缝喷射微通道散热器的流动传热特性
王卓然(),孙志坚*(),俞自涛
浙江大学 能源工程学院 热工与动力系统研究所,浙江 杭州 310027
Flow and heat transfer characteristics of slot-jet microchannel heat sinks
Zhuoran WANG(),Zhijian SUN*(),Zitao YU
Institute of Thermal Science and Power Systems, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2349 KB)   HTML
摘要:

优化微通道肋片结构,提高散热器的散热性、均温性并改善流场均匀性. 利用可实现的k-ε湍流模型,比较并讨论封闭通道与4组非封闭不同肋高通道的冷却性能,通过实验验证模型准确性. 研究结果表明:采用非封闭结构能够有效改善流场均匀性,使流场速度分布均匀;当通道由封闭式向肋高逐渐降低的非封闭式转变时,存在肋高最优值,使散热器的均温性能和散热性能达到最优. 在相同条件下,5组模型中肋高为1.8 mm的微通道散热器的散热性能和均温性能最佳,与封闭式通道相比,平均温度降低了4.22%,最大温差降低了7.4%;与肋高为1.2 mm的非封闭式通道相比,平均温度降低了14.95%,最大温差降低了15.43%.

关键词: 微通道散热器狭缝射流均温性散热性能强化传热数值模拟    
Abstract:

The microchannel rib structure was optimized to improve thermal performance, temperature uniformity, and flow field homogeneity. The realizable k-ε turbulence model was employed to compare and discuss the cooling performance of a fully enclosed channel and four non-enclosed channels with varying fin heights. Model accuracy was validated experimentally. Results showed that adopting non-enclosed configurations effectively improved flow field homogeneity, resulting in a uniform velocity distribution. An optimal fin height was identified during the transition from the enclosed channel to decreasing fin heights, maximizing both the temperature uniformity and thermal performance of the heat sink. Under identical conditions, among the five configurations studied, the microchannel heat sink with a fin height of 1.8 mm exhibited the best thermal and temperature uniformity performance. Compared to the enclosed channel design, the average temperature was reduced by 4.22% and the maximum temperature difference was reduced by 7.4%. Compared to the design with a fin height of 1.2 mm, the average temperature was reduced by 14.95% and the maximum temperature difference was reduced by 15.43%.

Key words: microchannel heat sink    slot jet    temperature uniformity    thermal performance    enhanced heat transfer    numerical simulation
收稿日期: 2024-05-07 出版日期: 2025-07-25
CLC:  TK 124  
通讯作者: 孙志坚     E-mail: 22227033@zju.edu.cn;zjsun@zju.edu.cn
作者简介: 王卓然(2001—),男,硕士生,从事电子器件冷却研究. orcid.org/0009-0006-6769-6104. E-mail:22227033@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王卓然
孙志坚
俞自涛

引用本文:

王卓然,孙志坚,俞自涛. 狭缝喷射微通道散热器的流动传热特性[J]. 浙江大学学报(工学版), 2025, 59(7): 1539-1546.

Zhuoran WANG,Zhijian SUN,Zitao YU. Flow and heat transfer characteristics of slot-jet microchannel heat sinks. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1539-1546.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1539

图 1  微通道散热器结构示意图
参数数值参数数值
散热器长度L/mm30.00上盖板厚度ht/mm1.00
散热器宽度W/mm30.0底部壁厚hd/mm1.00
狭缝长度Lin/mm2.00肋片宽度wf/mm0.50
狭缝宽度Win/mm28.50通道宽度wg/mm0.50
壁面厚度ww/mm0.75
表 1  微通道散热器几何结构尺寸
图 2  网格无关性检验
图 3  传热性能测试实验台
设备名称型号工作参数精度
稳压直流电源RXN-605D输出电压0~60 V,
输出电流0~5 A
电压± 0.1 V,
电流± 0.01 A
恒温水浴箱AD07R-205~100 ℃± 0.01 ℃
数据采集仪34970A采集频率0.1 Hz
热电偶OMEGA T?200~150 ℃± 0.1 ℃
流量计LZB-6WB60~600 mL/min± 15 mL/min
表 2  传热性能测试实验台主要装置参数
图 4  散热器及测点分布
图 5  散热器加热模块
图 6  不同加热功率及流量下实验与模型结果温度对比
图 7  不同泵功率下不同肋高模型的传热特性变化
hf/mmtavg/℃ΔTh/KR/(K·W?1
2.041.9413.670.035 7
1.841.0112.660.034 5
1.641.9513.110.036 9
1.443.2413.930.039 9
1.244.7114.970.043 1
表 3  不同肋高模型的平均温度、最大温差及热阻
图 8  不同肋高模型的温度分布
图 9  不同泵功下不同肋高模型的流动特性研究
图 10  不同肋高模型的通道中间截面速度矢量图
1 郭丰, 王娟, 朱沛琦 我国绿色数据中心建设工作的实践与探索[J]. 中国能源, 2020, 42 (7): 38- 41
GUO Feng, WANG Juan, ZHU Peiqi Practice and exploration of green data center construction in China[J]. Energy of China, 2020, 42 (7): 38- 41
2 RAHMAN M N, ESMAILPOUR A A hybrid data center architecture for big data[J]. Big Data Research, 2016, 3: 29- 40
doi: 10.1016/j.bdr.2016.02.001
3 王永真, 赵伟, 张靖 能源互联网下的数据中心能源供应[J]. 能源, 2020, (5): 61- 65
WANG Yongzhen, ZHAO Wei, ZHANG Jing Energy supply of data centers under the energy internet[J]. Energy, 2020, (5): 61- 65
4 中国通服数字基建产业研究院. 中国数据中心产业发展白皮书(2023年)[R/OL]. (2023–04–14)[2024–07–07]. https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf.
5 DARAGHMEH H M, WANG C C A review of current status of free cooling in datacenters[J]. Applied Thermal Engineering, 2017, 114: 1224- 1239
doi: 10.1016/j.applthermaleng.2016.10.093
6 骆清怡, 王长宏 数据中心多尺度热管理策略综述[J]. 制冷技术, 2021, 41 (3): 1- 11
LUO Qingyi, WANG Changhong Review of multi-scale thermal management strategy in data center[J]. Chinese Journal of Refrigeration Technology, 2021, 41 (3): 1- 11
doi: 10.3969/j.issn.2095-4468.2021.03.101
7 MAGHRABIE H M, OLABI A G, SAYED E T, et al Microchannel heat sinks with nanofluids for cooling electronic components: performance enhancement, challenges, and limitations[J]. Thermal Science and Engineering Progress, 2023, 37: 101608
doi: 10.1016/j.tsep.2022.101608
8 ZHAI Y L, XIA G D, LIU X F, et al Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure[J]. International Journal of Heat and Mass Transfer, 2015, 84: 293- 303
doi: 10.1016/j.ijheatmasstransfer.2015.01.039
9 贾玉婷, 姚森, 王景涛, 等 入口位置及角度对微通道散热器内流体流动与传热的影响[J]. 化工进展, 2021, 40 (12): 6423- 6431
JIA Yuting, YAO Sen, WANG Jingtao, et al Influence of inlet port position and angle on flow and heat transfer of microchannel heat sink[J]. Chemical Industry and Engineering Progress, 2021, 40 (12): 6423- 6431
10 刘泽宽. 沟槽式水冷芯片散热器的可视化研究和数值模拟 [D]. 天津: 天津商业大学, 2019: 1–58.
LIU Zekuan. Visualization and numerical simulation of grooved water-cooled chips radiator [D]. Tianjin: Tianjin University of Commerce, 2019: 1–58.
11 魏壮壮, 高林松, 王仁彻, 等 金属微通道热沉换热特性仿真与实验研究[J]. 真空与低温, 2020, 26 (2): 131- 138
WEI Zhuangzhuang, GAO Linsong, WANG Renche, et al Simulation and experimental research on heat transfer of metal microchannel heat-sink[J]. Vacuum and Cryogenics, 2020, 26 (2): 131- 138
doi: 10.3969/j.issn.1006-7086.2020.02.008
12 SUNG M K, MUDAWAR I Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme[J]. International Journal of Heat and Mass Transfer, 2006, 49 (3/4): 682- 694
13 BARRAU J, OMRI M, CHEMISANA D, et al Numerical study of a hybrid jet impingement/micro-channel cooling scheme[J]. Applied Thermal Engineering, 2012, 33: 237- 245
14 BARRAU J, CHEMISANA D, ROSELL J, et al An experimental study of a new hybrid jet impingement/micro-channel cooling scheme[J]. Applied Thermal Engineering, 2010, 30 (14/15): 2058- 2066
15 李雪强, 边雅丽, 张钟垚, 等 射流式水冷散热器关键参数对性能影响的模拟研究[J]. 制冷学报, 2021, 42 (6): 131- 139
LI Xueqiang, BIAN Yali, ZHANG Zhongyao, et al Numerical simulation of the performance of jet impingement liquid-cooling heat sink with different key parameters[J]. Journal of Refrigeration, 2021, 42 (6): 131- 139
doi: 10.3969/j.issn.0253-4339.2021.06.131
16 ZHANG Y, WANG S, LIU Z Effect of fluid distribution on the cooling performance of hybrid microchannel and slot-jet impingement system[J]. Applied Thermal Engineering, 2023, 222: 119913
doi: 10.1016/j.applthermaleng.2022.119913
17 王彬, 诸凯, 王雅博, 等 翅柱式水冷CPU芯片散热器冷却与流动性能[J]. 化工进展, 2017, 36 (6): 2031- 2037
WANG Bin, ZHU Kai, WANG Yabo, et al Experimental study on cooling and flow performance of water-cooling radiator with different pin-fins structures for CPU cooling[J]. Chemical Industry and Engineering Progress, 2017, 36 (6): 2031- 2037
18 BHANDARI P, PRAJAPATI Y K Thermal performance of open microchannel heat sink with variable pin fin height[J]. International Journal of Thermal Sciences, 2021, 159: 106609
doi: 10.1016/j.ijthermalsci.2020.106609
19 ZHANG Y, WANG S, DING P Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module[J]. International Journal of Heat and Mass Transfer, 2017, 113: 295- 309
doi: 10.1016/j.ijheatmasstransfer.2017.05.092
20 GAO W, ZHANG J F, QU Z G, et al Numerical investigations of heat transfer in hybrid microchannel heat sink with multi-jet impinging and trapezoidal fins[J]. International Journal of Thermal Sciences, 2021, 164: 106902
doi: 10.1016/j.ijthermalsci.2021.106902
21 DU W, LUO L, WANG S, et al Numerical investigation of flow field and heat transfer characteristics in a latticework duct with jet cooling structures[J]. International Journal of Thermal Sciences, 2020, 158: 106553
doi: 10.1016/j.ijthermalsci.2020.106553
22 LIU M, JIANG C, KHOO B C, et al A cell-based smoothed finite element model for the analysis of turbulent flow using realizable k-ε model and mixed meshes[J]. Journal of Computational Physics, 2024, 501: 112783
doi: 10.1016/j.jcp.2024.112783
[1] 麻建飞,贾港帅,江波,陈征,凌小康,贺少辉. 含空洞-减薄病害的超大跨隧道服役安全研究[J]. 浙江大学学报(工学版), 2025, 59(4): 698-705.
[2] 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制[J]. 浙江大学学报(工学版), 2024, 58(7): 1427-1435.
[3] 张勇,潘神功,刘水长,毛凤朝,王青妤,刘赫,尹艺霏. 全特征扰流元电池液冷板传热优化与实验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1157-1164.
[4] 刘俊城,谭勇,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报(工学版), 2023, 57(3): 530-541.
[5] 王意存,邵长孝,金台,邢江宽,罗坤,樊建人. 基于多门控混合专家网络的燃烧热化学流形表征[J]. 浙江大学学报(工学版), 2023, 57(12): 2401-2411.
[6] 季廷炜,查旭,谢芳芳,吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀. 基于高斯过程回归的空天飞行器多精度气动建模方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2314-2324.
[7] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[8] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[9] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[10] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[11] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[12] 王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
[13] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[14] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.
[15] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.