| 机械与能源工程 | 
									
										
		  							 | 
          							
		  									  								 
		  									  							    
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 海藻酸钠/聚氧化乙烯支架电直写成型及影响因素分析 | 
  					 
  					  										
						孙蕾1( ),王春静1,张文磊1,马志鹏2,程永强1 | 
					 
															
					1. 太原理工大学 集成电路学院,山西 太原 030024 2. 浙江大学 航空航天学院,浙江 杭州 310058 | 
					 
										
						 | 
					 
   										
    					| SA/PEO composite scaffold electrohydrodynamic direct writing fabrication and influencing factors analysis | 
  					 
  					  					  					
						Lei SUN1( ),Chunjing WANG1,Wenlei ZHANG1,Zhipeng MA2,Yongqiang CHENG1 | 
					 
															
						1. College of Integrated Circuits, Taiyuan University of Technology, Taiyuan 030024, China 2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China | 
					   
									 
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
												
												
												
												
												
												引用本文: 
																													
																																孙蕾,王春静,张文磊,马志鹏,程永强. 海藻酸钠/聚氧化乙烯支架电直写成型及影响因素分析[J]. 浙江大学学报(工学版), 2025, 59(7): 1532-1538.	
																															 
																																								     												                                                    																													
																																Lei SUN,Chunjing WANG,Wenlei ZHANG,Zhipeng MA,Yongqiang CHENG. SA/PEO composite scaffold electrohydrodynamic direct writing fabrication and influencing factors analysis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1532-1538.	
																															  
																																										链接本文: 
															
																
																	
																	https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.021
																	   或   
																
																
																https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1532
														    
																												   
												 | 
												 
												 
												
												
												
             
             
			              
            
									            
									                
																																															
																| 1 | 
																 
															     DAIKUARA L Y, CHEN X, YUE Z, et al 3D bioprinting constructs to facilitate skin regeneration[J]. Advanced Functional Materials, 2022, 32 (3): 2105080 
															     															     	 
															     																     		doi: 10.1002/adfm.202105080
															     																     																     																 | 
																	  
																																
																| 2 | 
																 
															     KANG M S, JANG J, JO H J, et al Advances and innovations of 3D bioprinting skin[J]. Biomolecules, 2023, 13 (1): 55
															     																 | 
																	  
																																
																| 3 | 
																 
															     WU Y, CAI L, CHEN G, et al 3D printed, environment tolerant all-solid-state capacitive ionic skin[J]. Journal of Materials Chemistry A, 2022, 10 (35): 18218- 18225 
															     															     	 
															     																     		doi: 10.1039/D2TA05388H
															     																     																     																 | 
																	  
																																
																| 4 | 
																 
															     WANG S, LUO B, BAI B, et al 3D printed chondrogenic functionalized PGS bioactive scaffold for cartilage regeneration[J]. Advanced Healthcare Materials, 2023, 12 (27): 2301006 
															     															     	 
															     																     		doi: 10.1002/adhm.202301006
															     																     																     																 | 
																	  
																																
																| 5 | 
																 
															     MAIHEMUTI A, ZHANG H, LIN X, et al 3D-printed fish gelatin scaffolds for cartilage tissue engineering[J]. Bioactive Materials, 2023, 26: 77- 87 
															     															     	 
															     																     		doi: 10.1016/j.bioactmat.2023.02.007
															     																     																     																 | 
																	  
																																
																| 6 | 
																 
															     GOLD K A, SAHA B, RAJEEVA PANDIAN N K, et al 3D bioprinted multicellular vascular models[J]. Advanced Healthcare Materials, 2021, 10 (21): e2101141 
															     															     	 
															     																     		doi: 10.1002/adhm.202101141
															     																     																     																 | 
																	  
																																
																| 7 | 
																 
															     WANG P, SUN Y, SHI X, et al 3D printing of tissue engineering scaffolds: a focus on vascular regeneration[J]. Bio-Design and Manufacturing, 2021, 4 (2): 344- 378 
															     															     	 
															     																     		doi: 10.1007/s42242-020-00109-0
															     																     																     																 | 
																	  
																																
																| 8 | 
																 
															     SUN D, CHANG C, LI S, et al Near-field electrospinning[J]. Nano Letters, 2006, 6 (4): 839- 842 
															     															     	 
															     																     		doi: 10.1021/nl0602701
															     																     																     																 | 
																	  
																																
																| 9 | 
																 
															     HUANG Y, BU N, DUAN Y, et al Electrohydrodynamic direct-writing[J]. Nanoscale, 2013, 5 (24): 12007- 12017 
															     															     	 
															     																     		doi: 10.1039/c3nr04329k
															     																     																     																 | 
																	  
																																
																| 10 | 
																 
															     YIN Z, WANG D, GUO Y, et al Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications[J]. InfoMat, 2024, 6 (2): e12505 
															     															     	 
															     																     		doi: 10.1002/inf2.12505
															     																     																     																 | 
																	  
																																
																| 11 | 
																 
															     MKHIZE N, MURUGAPPAN K, CASTELL M R, et al Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors[J]. Journal of Materials Chemistry C, 2021, 9 (13): 4591- 4596 
															     															     	 
															     																     		doi: 10.1039/D0TC05719C
															     																     																     																 | 
																	  
																																
																| 12 | 
																 
															     COHEN T A, SHARP D, KLUHERZ K T, et al Direct patterning of perovskite nanocrystals on nanophotonic cavities with electrohydrodynamic inkjet printing[J]. Nano Letters, 2022, 22 (14): 5681- 5688 
															     															     	 
															     																     		doi: 10.1021/acs.nanolett.2c00473
															     																     																     																 | 
																	  
																																
																| 13 | 
																 
															     WU Y, FU C, QIAN S, et al Flexible and transparent W-band absorber fabricated by EHD printing technology[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (8): 1345- 1349 
															     															     	 
															     																     		doi: 10.1109/LAWP.2020.3000786
															     																     																     																 | 
																	  
																																
																| 14 | 
																 
															     DUAN Y, YANG W, XIAO J, et al High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure[J]. Lab on a Chip, 2022, 22 (20): 3877- 3884 
															     															     	 
															     																     		doi: 10.1039/D2LC00624C
															     																     																     																 | 
																	  
																																
																| 15 | 
																 
															     YANG W, DUAN Y, GAO J, et al Crosstalk elimination for large-scale, high-density electrohydrodynamic printing via optimization of nozzle material and structure[J]. Additive Manufacturing, 2023, 77: 103815 
															     															     	 
															     																     		doi: 10.1016/j.addma.2023.103815
															     																     																     																 | 
																	  
																																
																| 16 | 
																 
															     HE J, HAO G, MENG Z, et al Expanding melt-based electrohydrodynamic printing of highly-ordered microfibrous architectures to cm-height via in situ charge neutralization[J]. Advanced Materials Technologies, 2022, 7 (7): 2101197 
															     															     	 
															     																     		doi: 10.1002/admt.202101197
															     																     																     																 | 
																	  
																																
																| 17 | 
																 
															     LI K, WANG D, ZHAO K, et al Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture[J]. Talanta, 2020, 211: 120750 
															     															     	 
															     																     		doi: 10.1016/j.talanta.2020.120750
															     																     																     																 | 
																	  
																																
																| 18 | 
																 
															     LI K, WANG D, ZHANG F, et al Tip-viscid electrohydrodynamic jet 3D printing of composite osteochondral scaffold[J]. Nanomaterials, 2021, 11 (10): 2694 
															     															     	 
															     																     		doi: 10.3390/nano11102694
															     																     																     																 | 
																	  
																																
																| 19 | 
																 
															     YAO C, QIU Z, LI X, et al Electrohydrodynamic printing of microfibrous architectures with cell-scale spacing for improved cellular migration and neurite outgrowth[J]. Small, 2023, 19 (19): 2207331 
															     															     	 
															     																     		doi: 10.1002/smll.202207331
															     																     																     																 | 
																	  
																																
																| 20 | 
																 
															     QIU Z, ZHU H, WANG Y, et al Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment[J]. Bio-Design and Manufacturing, 2023, 6 (2): 136- 149 
															     															     	 
															     																     		doi: 10.1007/s42242-022-00225-z
															     																     																     																 | 
																	  
																																
																| 21 | 
																 
															     YEO M, KIM G Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation[J]. Carbohydrate Polymers, 2021, 272: 118444 
															     															     	 
															     																     		doi: 10.1016/j.carbpol.2021.118444
															     																     																     																 | 
																	  
																																
																| 22 | 
																 
															     FANG Y, WANG C, LIU Z, et al 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration[J]. Advanced Science, 2023, 10 (12): 2205744 
															     															     	 
															     																     		doi: 10.1002/advs.202205744
															     																     																     																 | 
																	  
																																
																| 23 | 
																 
															     ZHANG Z, JØRGENSEN M L, WANG Z, et al 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration[J]. Biomaterials, 2020, 253: 120108 
															     															     	 
															     																     		doi: 10.1016/j.biomaterials.2020.120108
															     																     																     																 | 
																	  
																																
																| 24 | 
																 
															     WANG J, WANG H, MO X, et al Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks[J]. Advanced Materials, 2020, 32 (40): 2004555 
															     															     	 
															     																     		doi: 10.1002/adma.202004555
															     																     																     																 | 
																	  
																																
																| 25 | 
																 
															     FUH Y K, WU Y C, HE Z Y, et al The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning[J]. Materials Science and Engineering: C, 2016, 62: 879- 887 
															     															     	 
															     																     		doi: 10.1016/j.msec.2016.02.028
															     																     																     																 | 
																	  
																																
																| 26 | 
																 
															     郑高峰, 钟炜政, 姜佳昕, 等. 基于PEO电纺膜基底的近场直写聚焦及微图案脱离方法: 201910078347.0 [P]. 2020–02–10.
															     																 | 
																	  
																																
																| 27 | 
																 
															     ANDRUKHOV O, HUBER R, SHI B, et al Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness[J]. Dental Materials, 2016, 32 (11): 1374- 1384 
															     															     	 
															     																     		doi: 10.1016/j.dental.2016.08.217
															     																     																     																 | 
																	  
																																
																| 28 | 
																 
															     XIE C, GAO Q, WANG P, et al Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers[J]. Materials and Design, 2019, 181: 108092 
															     															     	 
															     																     		doi: 10.1016/j.matdes.2019.108092
															     																     																     																 | 
																	  
																																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |