[1] LANGER R, VACANTI J P. Tissue engineering[J]. Science, 1993, 260(5110):920-926.
[2] SACHLOS E, CZERNUSZKA J T. Making tissue engineering scaffolds work. Review:the application of solid freeform fabrication technology to the production of tissue engineering scaffolds[J]. European Cells and Materials, 2003, 5(29):39-40.
[3] NAM Y S, PARK T G. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation[J]. Journal of Biomedical Materials Research, 1999, 47(1):8-17.
[4] INTRANUOVO F, GRISTINA R, BRUN F, et al. Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering[J]. Plasma Processes and Polymers, 2014, 11(2):184-195.
[5] WU X, LIU Y, LI X, et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method[J]. Acta Biomaterialia, 2010, 6(3):1167-1177.
[6] PHAM Q P, SHARMA U, MIKOS A G. Electrospinning of polymeric nanofibers for tissue engineering applications:a review[J]. Tissue Engineering, 2006, 12(5):1197-1211.
[7] GARRIGUES N W, LITTLE D, SANCHEZ-ADAMS J, et al. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2014, 102(11):3998-4008.
[8] JANG J H, CASTANO O, KIM H W. Electrospun materials as potential platforms for bone tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61(12):1065-1083.
[9] HASAN A, MEMIC A, ANNABI N, et al. Electrospun scaffolds for tissue engineering of vascular grafts[J]. Acta Biomaterialia, 2014, 10(1):11-25.
[10] ZHAO G, ZHANG X, LU T J, et al. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering[J]. Advanced Functional Materials, 2015, 25(36):5726-5738.
[11] BAIGUERA S, DEL GAUDIO C, LUCATELLI E, et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering[J]. Biomaterials, 2014, 35(4):1205-1214.
[12] SUNDARAMURTHI D, KRISHNAN U M, SETHURAMAN S. Electrospun nanofibers as scaffolds for skin tissue engineering[J]. Polymer Reviews, 2014, 54(2):348-376.
[13] AJALLOUEIAN F, ZEIAI S, FOSSUM M, et al. Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion[J]. Biomaterials, 2014, 35(22):5741-5748.
[14] SPIRA M E, HAI A. Multi-electrode array technologies for neuroscience and cardiology[J]. Nature Nanotechnology, 2013, 8(2):83-94.
[15] 王琴, 方佳如, 曹端喜, 等. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报:工学版, 2016, 50(6):1214-1220. WANG QIN, FANG Jia-ru, CAO Duan-xi, et al. Optimization design and drug analysis of cardiomyocyte-based biosensor[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(6):1214-1220.
[16] 方佳如, 王琴, 黎洪波, 等. 心肌细胞电位传感器在海洋生物毒素检测中的研究[J]. 传感技术学报, 2016, 29(08):1127-1132. FANG Jia-ru, WANG Qin, LI Hong-bo, et al. Study on marine toxins detection of cardiomyocyte potential sensor[J]. Journal of Transduction Technology, 2016, 29(08):1127-1132.
[17] FRAMPTON J P, HYND M R, WILLIAMS J C, et al. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes[J]. Journal of Neural Engineering, 2007, 4(4):399.
[18] WANG L, ZHU J, DENG C, et al. An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing[J]. Lab on a Chip, 2008, 8(6):872-878.
[19] TOH Y C, ZHANG C, ZHANG J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels[J]. Lab on a Chip, 2007, 7(3):302-309.
[20] GRIFFITH L G, SWARTZ M A. Capturing complex 3D tissue physiology in vitro[J]. Nature reviews Molecular Cell Biology, 2006, 7(3):211-225.
[21] CUKIERMAN E, PANKOV R, STEVENS D R, et al. Taking cell-matrix adhesions to the third dimension[J]. Science, 2001, 294(5547):1708-1712.
[22] CRUMP S S. Apparatus and method for creating three-dimensional objects:U.S. Patent 5,121,329[P]. 1992-06-09.
[23] SILL T J, VON RECUM H A. Electrospinning:applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29(13):1989-2006.
[24] JUNG Y, PARK M S, LEE J W, et al. Cartilage regeneration with highly-elastic three-dimensionalscaffolds prepared from biodegradable poly (l-lactide-co-ε-caprolactone)[J]. Biomaterials, 2008, 29(35):4630-4636.
[25] DORGAN J R, LEHERMEIER H J, PALADE L I, et al. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources[C]//Macromolecular Symposia.[S. l.]:Wiley, 2001:55-66.
[26] SÖDERGÅRD, STOLT M. Properties of lactic acid based polymers and their correlation with composition[J]. Progress in Polymer Science, 2002, 27(6):1123-1163.
[27] STEVENS M M, GEORGE J H. Exploring and engineering the cell surface interface[J]. Science, 2005, 310(5751):1135-1138.
[28] BERS D M. Cardiac excitation-contraction coupling[J]. Nature, 2002, 415(6868):198-205. |