Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1415-1422    DOI: 10.3785/j.issn.1008-973X.2018.07.023
生物医学工程     
结合组织工程支架的三维心肌细胞传感器
魏鑫伟1, 高庆2, 苏凯麒1, 秦臻1, 潘宇祥1, 贺永2, 王平1
1. 浙江大学 生物医学工程教育部重点实验室, 浙江 杭州 310027;
2. 浙江大学 流体动力与机电系统国家重点 实验室, 浙江 杭州 310027
Three-dimensional cardiomyocyte-based biosensor with tissue engineering scaffold
WEI Xin-wei1, GAO Qing2, SU Kai-qi1, QIN Zhen1, PAN Yu-xiang1, HE Yong2, WANG Ping1
1. Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(7417 KB)   HTML
摘要:

以聚乳酸(PLA)和聚己内酯(PCL)为材料,通过三维(3D)打印和静电纺丝技术,制造组织工程支架,用于培养新生大鼠心肌细胞.将培养了心肌细胞的支架耦合在微电极阵列(MEA)芯片表面构建三维细胞传感器,用于检测心肌细胞的胞外场电位(EFP)信号.实验结果表明,心肌细胞在PLA/PCL支架上附着和生长情况良好,由于兴奋-收缩耦联,能够带动纤维丝产生联合搏动.48 h后,支架上心肌细胞的搏动速率趋于稳定.细胞电位检测结果表明,细胞支架与MEA芯片耦合良好,形成三维细胞传感系统,能够检测到支架内心肌细胞的胞外场电位,输出稳定、高信噪比的信号,且EFP信号幅值和发放速率与传统二维培养方法所记录到的信号相似.

Abstract:

Polylactic acid (PLA) and polycaprolactone (PCL) were selected as materials to fabricate tissue engineering scaffolds by three-dimensional (3D) printing and electrospinning, which were used to culture cardiomyocytes of neonatal rats. Then the scaffolds with cardiomyocytes were coupled with microelectrode array (MEA) to form a 3D cell-based biosensor, which was used to detect the extracellular field potential (EFP) of cardiomyocytes. The experimental results demonstrated that cardiomyocytes adhered and grew well in scaffolds, and could drive fibers to produce combined beating due to the excitation-contraction coupling. After 48 hours, the beating rate of cardiomyocytes in the scaffolds tended to be stable. The detecting results demonstrated that scaffolds and MEA were coupled well to be a 3D cell-based biosensor system, which could detect the EFP of cardiomyocytes in scaffolds with stable and high-SNR signals. The EFP amplitude and firing rate were both similar to the signals recorded from traditional two-dimensional (2D) culturing method.

收稿日期: 2017-12-04 出版日期: 2018-06-26
CLC:  R318  
基金资助:

国家“973”重点基础研究发展规划资助项目(2015CB352101);国家自然科学基金重大仪器专项资助项目(31627801).

通讯作者: 王平,男,教授,博导.orcid.org/0000-0002-9944-5493.     E-mail: cnpwang@zju.edu.cn
作者简介: 魏鑫伟(1994-),男,硕士生,从事生物医学传感器的研究.orcid.org/0000-0003-3058-2817.E-mail:weixinwei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

魏鑫伟, 高庆, 苏凯麒, 秦臻, 潘宇祥, 贺永, 王平. 结合组织工程支架的三维心肌细胞传感器[J]. 浙江大学学报(工学版), 2018, 52(7): 1415-1422.

WEI Xin-wei, GAO Qing, SU Kai-qi, QIN Zhen, PAN Yu-xiang, HE Yong, WANG Ping. Three-dimensional cardiomyocyte-based biosensor with tissue engineering scaffold. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1415-1422.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.023        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1415

[1] LANGER R, VACANTI J P. Tissue engineering[J]. Science, 1993, 260(5110):920-926.
[2] SACHLOS E, CZERNUSZKA J T. Making tissue engineering scaffolds work. Review:the application of solid freeform fabrication technology to the production of tissue engineering scaffolds[J]. European Cells and Materials, 2003, 5(29):39-40.
[3] NAM Y S, PARK T G. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation[J]. Journal of Biomedical Materials Research, 1999, 47(1):8-17.
[4] INTRANUOVO F, GRISTINA R, BRUN F, et al. Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering[J]. Plasma Processes and Polymers, 2014, 11(2):184-195.
[5] WU X, LIU Y, LI X, et al. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method[J]. Acta Biomaterialia, 2010, 6(3):1167-1177.
[6] PHAM Q P, SHARMA U, MIKOS A G. Electrospinning of polymeric nanofibers for tissue engineering applications:a review[J]. Tissue Engineering, 2006, 12(5):1197-1211.
[7] GARRIGUES N W, LITTLE D, SANCHEZ-ADAMS J, et al. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2014, 102(11):3998-4008.
[8] JANG J H, CASTANO O, KIM H W. Electrospun materials as potential platforms for bone tissue engineering[J]. Advanced Drug Delivery Reviews, 2009, 61(12):1065-1083.
[9] HASAN A, MEMIC A, ANNABI N, et al. Electrospun scaffolds for tissue engineering of vascular grafts[J]. Acta Biomaterialia, 2014, 10(1):11-25.
[10] ZHAO G, ZHANG X, LU T J, et al. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering[J]. Advanced Functional Materials, 2015, 25(36):5726-5738.
[11] BAIGUERA S, DEL GAUDIO C, LUCATELLI E, et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering[J]. Biomaterials, 2014, 35(4):1205-1214.
[12] SUNDARAMURTHI D, KRISHNAN U M, SETHURAMAN S. Electrospun nanofibers as scaffolds for skin tissue engineering[J]. Polymer Reviews, 2014, 54(2):348-376.
[13] AJALLOUEIAN F, ZEIAI S, FOSSUM M, et al. Constructs of electrospun PLGA, compressed collagen and minced urothelium for minimally manipulated autologous bladder tissue expansion[J]. Biomaterials, 2014, 35(22):5741-5748.
[14] SPIRA M E, HAI A. Multi-electrode array technologies for neuroscience and cardiology[J]. Nature Nanotechnology, 2013, 8(2):83-94.
[15] 王琴, 方佳如, 曹端喜, 等. 心肌细胞传感器优化设计及其药物分析[J]. 浙江大学学报:工学版, 2016, 50(6):1214-1220. WANG QIN, FANG Jia-ru, CAO Duan-xi, et al. Optimization design and drug analysis of cardiomyocyte-based biosensor[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(6):1214-1220.
[16] 方佳如, 王琴, 黎洪波, 等. 心肌细胞电位传感器在海洋生物毒素检测中的研究[J]. 传感技术学报, 2016, 29(08):1127-1132. FANG Jia-ru, WANG Qin, LI Hong-bo, et al. Study on marine toxins detection of cardiomyocyte potential sensor[J]. Journal of Transduction Technology, 2016, 29(08):1127-1132.
[17] FRAMPTON J P, HYND M R, WILLIAMS J C, et al. Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes[J]. Journal of Neural Engineering, 2007, 4(4):399.
[18] WANG L, ZHU J, DENG C, et al. An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing[J]. Lab on a Chip, 2008, 8(6):872-878.
[19] TOH Y C, ZHANG C, ZHANG J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels[J]. Lab on a Chip, 2007, 7(3):302-309.
[20] GRIFFITH L G, SWARTZ M A. Capturing complex 3D tissue physiology in vitro[J]. Nature reviews Molecular Cell Biology, 2006, 7(3):211-225.
[21] CUKIERMAN E, PANKOV R, STEVENS D R, et al. Taking cell-matrix adhesions to the third dimension[J]. Science, 2001, 294(5547):1708-1712.
[22] CRUMP S S. Apparatus and method for creating three-dimensional objects:U.S. Patent 5,121,329[P]. 1992-06-09.
[23] SILL T J, VON RECUM H A. Electrospinning:applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29(13):1989-2006.
[24] JUNG Y, PARK M S, LEE J W, et al. Cartilage regeneration with highly-elastic three-dimensionalscaffolds prepared from biodegradable poly (l-lactide-co-ε-caprolactone)[J]. Biomaterials, 2008, 29(35):4630-4636.
[25] DORGAN J R, LEHERMEIER H J, PALADE L I, et al. Polylactides:properties and prospects of an environmentally benign plastic from renewable resources[C]//Macromolecular Symposia.[S. l.]:Wiley, 2001:55-66.
[26] SÖDERGÅRD, STOLT M. Properties of lactic acid based polymers and their correlation with composition[J]. Progress in Polymer Science, 2002, 27(6):1123-1163.
[27] STEVENS M M, GEORGE J H. Exploring and engineering the cell surface interface[J]. Science, 2005, 310(5751):1135-1138.
[28] BERS D M. Cardiac excitation-contraction coupling[J]. Nature, 2002, 415(6868):198-205.

[1] 赵翠莲, 徐浩宇, 罗林辉, 王凯. 熵在不同等级偏瘫患者sEMG运动检测中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 798-805.
[2] 虞效益, 陈光明, 胡长兴, 徐美娟. 电导法测定低温保护剂浓度及其在低温保存中应用[J]. 浙江大学学报(工学版), 2017, 51(8): 1640-1645.