Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1423-1430    DOI: 10.3785/j.issn.1008-973X.2018.07.024
地球科学与工程     
基于散点图的Landsat 8影像可调阈值的云识别方法
郭仲皓, 任宇鹏, 秦怡, 王鑫, 谷娟, 马静宇, 邹乐君, 沈晓华
浙江大学 教育部含油气盆地构造研究中心, 浙江 杭州 310027
Cloud detection method based on scatter plot for Landsat 8 image with adjustable threshold
GUO Zhong-hao, REN Yu-peng, QIN Yi, WANG Xin, GU Juan, MA Jing-yu, ZOU Le-jun, SHEN Xiao-hua
Research Center for Structures in Oil and Gas Bearing Basins Ministry of Education, Zhejiang University, Hangzhou 310027, China
 全文: PDF(7658 KB)   HTML
摘要:

提出针对Landsat 8影像的云识别方法SARM.在对云及其他地物进行光谱分析的基础上,使用Landsat 8可见光到近红外波段(波段1~5)和热红外波段(波段10、11),构建基于像元的波谱面积比值.利用归一化植被指数(NDVI)和波谱面积比值构建影像的散点图,采用高、中、低3种云识别置信区间,完成对云的识别.以3景不同地区的Landsat 8影像为例进行实验,每景选取具有代表性的3个区域,每个区域10 000个像元进行精度分析.结果表明:波谱面积比值增强了云和下垫面的差异,更利于区分;基于波谱面积比值和NDVI的散点图,能够清晰地展现不同地类条件下云的分布特征;利用可调阈值的提取方法能够满足不同研究目的对云识别的需求;与已提出的3种云识别方法相比,总体精度提高10%左右.

Abstract:

The spectral area ratio method (SARM) was proposed to detect clouds from Landsat 8 images. Landsat 8 visible to near infrared bands (band 1-band 5) and thermal infrared bands (band 10-band 11) were used based on spectral analysis on clouds and other ground objects in order to establish pixels-based spectral area ratio. Scatter plot for images was plotted with normalized difference vegetation index (NDVI) and spectral area ratio. Clouds were detected with different confidence intervals (high, medium and low level). Three Landsat 8 images of different spatial were employed to demonstrate the accuracy of the method with three representative zones from each image and 10 000 pixels from each zone. Results show that spectral area ratio can enhance the difference between clouds and underlying surface, which is beneficial for the cloud detection. Scatter plot based on NDVI and spectral area ratio can clearly display the cloud distribution features under different ground conditions. The extraction method of adjustable threshold can meet requirements of cloud detection with various objectives. The method can significantly improve the overall accuracy by 10% compared with three previous cloud detection methods.

收稿日期: 2017-07-05 出版日期: 2018-06-26
CLC:  P237  
基金资助:

国家科技重大专项资助项目(2017ZX05008-001-006).

通讯作者: 邹乐君,男,教授.orcid.org/0000-0003-1408-5968.     E-mail: zoulejun2006@zju.edu.cn
作者简介: 郭仲皓(1993-),男,硕士,从事遥感图像云识别方法的研究.orcid.org/0000-0003-2757-6985.E-mail:guozhonghao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

郭仲皓, 任宇鹏, 秦怡, 王鑫, 谷娟, 马静宇, 邹乐君, 沈晓华. 基于散点图的Landsat 8影像可调阈值的云识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1423-1430.

GUO Zhong-hao, REN Yu-peng, QIN Yi, WANG Xin, GU Juan, MA Jing-yu, ZOU Le-jun, SHEN Xiao-hua. Cloud detection method based on scatter plot for Landsat 8 image with adjustable threshold. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1423-1430.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.024        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1423

[1] HAGOLLE O, HUC M, PASCUAL D V, et al. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images[J]. Remote Sensing of Environment, 2010, 114(8):1747-1755.
[2] GOODWIN N R, COLLETT L J, DENHAM R J, et al. Cloud and cloud shadow screening across Queensland, Australia:an automated method for Landsat TM/ETM plus time series[J]. Remote Sensing of Environment, 2013, 134:50-65.
[3] JIN S, HOMER C, YANG L, et al. Automated cloud and shadow detection and filling using two-date Landsa-t imagery in the USA[J]. International Journal of Remote Sensing, 2013, 34(5):1540-1560.
[4] ZHENG L J, WU Y, YU T, et al. Object-based cloud detection of multitemporal high-resolution stationary satellite images[J]. Optical Engineering, 2017, 56(7):73103.
[5] IRISH R R. Landsat 7 automatic cloud cover assessment[C]//Proceedings of SPIE. Orlando:SPIE, 2000:348-355.
[6] IRISH R R, BARKER J L, GOWARD S N, et al. Characterization of the Landsat-7 ETM+ automated cloud cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(10):1179-1188.
[7] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012, 118:83-94.
[8] ZHU Z, WANG S X, WOODCOCK C E. Improvement and expansion of the Fmask algorithm:cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images[J]. Remote Sensing of Environment, 2015, 159:269-277.
[9] FOGA S, SCARAMUZZA P L, GUO S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017, 194:379-390.
[10] ZANTER K. Landsat 8(L8) data users handbook[M]. 2th ed. Sioux Falls, South Dakota:EROS, 2016:47-54.
[11] SCARAMUZZA P L, BOUCHARD M A, DWYER J L. Development of the Landsat data continuity mission cloud-cover assessment algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4):1140-1154.
[12] SHEN Y, WANG Y, LV H, et al. Removal of thin clouds using cirrus and QA bands of Landsat-8[J]. Photogrammetric Engineering and Remote Sensing, 2015,81(9):721-731.
[13] 蒋嫚嫚,邵振峰.采用主成分分析的改进云检测算法[J].测绘科学,2015,40(2):150-154. JIANG Man-man, SHAO Zhen-feng. Advanced algorithm of PCA-based Fmask cloud detection[J]. Science of Surveying and Mapping, 2015, 40(2):150-154.
[14] 夏浪,毛克彪,孙知文,等.针对NPP VⅡRS数据的云检测方法研究[J].中国环境科学,2014,34(3):574-580. XIA Lang, MAO Ke-biao, SUN Zhi-wen, et al. Cloud detection application on NPP VⅡRS[J]. China Environmental Science, 2014, 34(3):574-580.
[15] 于敏,程明虎,刘辉.地表温度-归一化植被指数特征空间干旱监测方法的改进及应用研究[J].气象学报,2011,5(69):922-931. YU Min, CHENG Ming-hu, LIU Hui. An improvement of the land surface temperature-NDVI space drought monitoring method and its applications[J]. Acta Meteorologica Sinica, 2011, 5(69):922-931.
[16] 王娇,丁建丽,袁泽,等.基于Ts-NDVI特征空间的绿洲土壤水分监测算法改进[J].中国沙漠,2016,6(36):1606-1612. WANG Jiao, DING Jian-li, YUAN Ze, et al. Improvement and comparison of soil moisture monitoring algorithm in oasis based on Ts-NDVI feature space[J]. Journal of Desert Research, 2016, 6(36):1606-1612.
[17] PAN P P, CHEN G Y, SARUTA K, et al. Snow cover detection based on two-dimensional scatter plots from MODIS imagery data[J]. Journal of Applied Remote Sensing, 2015, 9(1):096083.
[18] CAO X M, FENG Y M, WANG J L. Remote sensing monitoring the spatio-temporal changes of aridification in the Mongolian Plateau based on the general Ts-N-DVI space, 1981-2012[J]. Journal of Earth System Science, 2017, 126(4):58.
[19] ACKERMAN S A, STRABALA K I, MENZEL W P,et al. Discriminating clear sky from clouds with MODI-S[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(24):32141-32157.
[20] CHEN P Y, SRINIVASAN R, FEDOSEJEVS G, et al.An automated cloud detection method for daily NOAA-14 AVHRR data for Texas, USA[J]. International Journal of Remote Sensing, 2002, 23(15):2939-2950.
[21] LIU Y H, KEY J R, FREY R A, et al. Nighttime polar cloud detection with MODIS[J]. Remote Sensing of Environment, 2004, 92(2):181-194.
[22] 宋瑞祥,张庆国,于海敬,等.遥感数据的城市不透水面估算及增温效应[J].浙江大学学报:工学版,2017,51(5):1051-1056. SONG Rui-xiang, ZHANG Qing-guo, YU Hai-jing, et al. Estimations to impervious surface and their effects of warming for city using remote sensing data[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(5):1051-1056.
[23] GUO F, SHEN X H, ZOU L J, et al. Cloud detection method based on spectral area ratios in MODIS data[J]. Canadian Journal of Remote Sensing, 2015,41(6):561-576.
[24] SUN L, MI X T, WEI J, et al. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124:70-88.

[1] 孙伟伟, 马俊, 杨刚, 李巍岳. 改进核空间对称稀疏表达用于高光谱波段选择[J]. 浙江大学学报(工学版), 2018, 52(4): 687-693.