| 机械与能源工程 |
|
|
|
|
| 海藻酸钠/聚氧化乙烯支架电直写成型及影响因素分析 |
孙蕾1( ),王春静1,张文磊1,马志鹏2,程永强1 |
1. 太原理工大学 集成电路学院,山西 太原 030024 2. 浙江大学 航空航天学院,浙江 杭州 310058 |
|
| SA/PEO composite scaffold electrohydrodynamic direct writing fabrication and influencing factors analysis |
Lei SUN1( ),Chunjing WANG1,Wenlei ZHANG1,Zhipeng MA2,Yongqiang CHENG1 |
1. College of Integrated Circuits, Taiyuan University of Technology, Taiyuan 030024, China 2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China |
引用本文:
孙蕾,王春静,张文磊,马志鹏,程永强. 海藻酸钠/聚氧化乙烯支架电直写成型及影响因素分析[J]. 浙江大学学报(工学版), 2025, 59(7): 1532-1538.
Lei SUN,Chunjing WANG,Wenlei ZHANG,Zhipeng MA,Yongqiang CHENG. SA/PEO composite scaffold electrohydrodynamic direct writing fabrication and influencing factors analysis. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1532-1538.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.021
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1532
|
| 1 |
DAIKUARA L Y, CHEN X, YUE Z, et al 3D bioprinting constructs to facilitate skin regeneration[J]. Advanced Functional Materials, 2022, 32 (3): 2105080
doi: 10.1002/adfm.202105080
|
| 2 |
KANG M S, JANG J, JO H J, et al Advances and innovations of 3D bioprinting skin[J]. Biomolecules, 2023, 13 (1): 55
|
| 3 |
WU Y, CAI L, CHEN G, et al 3D printed, environment tolerant all-solid-state capacitive ionic skin[J]. Journal of Materials Chemistry A, 2022, 10 (35): 18218- 18225
doi: 10.1039/D2TA05388H
|
| 4 |
WANG S, LUO B, BAI B, et al 3D printed chondrogenic functionalized PGS bioactive scaffold for cartilage regeneration[J]. Advanced Healthcare Materials, 2023, 12 (27): 2301006
doi: 10.1002/adhm.202301006
|
| 5 |
MAIHEMUTI A, ZHANG H, LIN X, et al 3D-printed fish gelatin scaffolds for cartilage tissue engineering[J]. Bioactive Materials, 2023, 26: 77- 87
doi: 10.1016/j.bioactmat.2023.02.007
|
| 6 |
GOLD K A, SAHA B, RAJEEVA PANDIAN N K, et al 3D bioprinted multicellular vascular models[J]. Advanced Healthcare Materials, 2021, 10 (21): e2101141
doi: 10.1002/adhm.202101141
|
| 7 |
WANG P, SUN Y, SHI X, et al 3D printing of tissue engineering scaffolds: a focus on vascular regeneration[J]. Bio-Design and Manufacturing, 2021, 4 (2): 344- 378
doi: 10.1007/s42242-020-00109-0
|
| 8 |
SUN D, CHANG C, LI S, et al Near-field electrospinning[J]. Nano Letters, 2006, 6 (4): 839- 842
doi: 10.1021/nl0602701
|
| 9 |
HUANG Y, BU N, DUAN Y, et al Electrohydrodynamic direct-writing[J]. Nanoscale, 2013, 5 (24): 12007- 12017
doi: 10.1039/c3nr04329k
|
| 10 |
YIN Z, WANG D, GUO Y, et al Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications[J]. InfoMat, 2024, 6 (2): e12505
doi: 10.1002/inf2.12505
|
| 11 |
MKHIZE N, MURUGAPPAN K, CASTELL M R, et al Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors[J]. Journal of Materials Chemistry C, 2021, 9 (13): 4591- 4596
doi: 10.1039/D0TC05719C
|
| 12 |
COHEN T A, SHARP D, KLUHERZ K T, et al Direct patterning of perovskite nanocrystals on nanophotonic cavities with electrohydrodynamic inkjet printing[J]. Nano Letters, 2022, 22 (14): 5681- 5688
doi: 10.1021/acs.nanolett.2c00473
|
| 13 |
WU Y, FU C, QIAN S, et al Flexible and transparent W-band absorber fabricated by EHD printing technology[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (8): 1345- 1349
doi: 10.1109/LAWP.2020.3000786
|
| 14 |
DUAN Y, YANG W, XIAO J, et al High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure[J]. Lab on a Chip, 2022, 22 (20): 3877- 3884
doi: 10.1039/D2LC00624C
|
| 15 |
YANG W, DUAN Y, GAO J, et al Crosstalk elimination for large-scale, high-density electrohydrodynamic printing via optimization of nozzle material and structure[J]. Additive Manufacturing, 2023, 77: 103815
doi: 10.1016/j.addma.2023.103815
|
| 16 |
HE J, HAO G, MENG Z, et al Expanding melt-based electrohydrodynamic printing of highly-ordered microfibrous architectures to cm-height via in situ charge neutralization[J]. Advanced Materials Technologies, 2022, 7 (7): 2101197
doi: 10.1002/admt.202101197
|
| 17 |
LI K, WANG D, ZHAO K, et al Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture[J]. Talanta, 2020, 211: 120750
doi: 10.1016/j.talanta.2020.120750
|
| 18 |
LI K, WANG D, ZHANG F, et al Tip-viscid electrohydrodynamic jet 3D printing of composite osteochondral scaffold[J]. Nanomaterials, 2021, 11 (10): 2694
doi: 10.3390/nano11102694
|
| 19 |
YAO C, QIU Z, LI X, et al Electrohydrodynamic printing of microfibrous architectures with cell-scale spacing for improved cellular migration and neurite outgrowth[J]. Small, 2023, 19 (19): 2207331
doi: 10.1002/smll.202207331
|
| 20 |
QIU Z, ZHU H, WANG Y, et al Functionalized alginate-based bioinks for microscale electrohydrodynamic bioprinting of living tissue constructs with improved cellular spreading and alignment[J]. Bio-Design and Manufacturing, 2023, 6 (2): 136- 149
doi: 10.1007/s42242-022-00225-z
|
| 21 |
YEO M, KIM G Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation[J]. Carbohydrate Polymers, 2021, 272: 118444
doi: 10.1016/j.carbpol.2021.118444
|
| 22 |
FANG Y, WANG C, LIU Z, et al 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration[J]. Advanced Science, 2023, 10 (12): 2205744
doi: 10.1002/advs.202205744
|
| 23 |
ZHANG Z, JØRGENSEN M L, WANG Z, et al 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration[J]. Biomaterials, 2020, 253: 120108
doi: 10.1016/j.biomaterials.2020.120108
|
| 24 |
WANG J, WANG H, MO X, et al Reduced graphene oxide-encapsulated microfiber patterns enable controllable formation of neuronal-like networks[J]. Advanced Materials, 2020, 32 (40): 2004555
doi: 10.1002/adma.202004555
|
| 25 |
FUH Y K, WU Y C, HE Z Y, et al The control of cell orientation using biodegradable alginate fibers fabricated by near-field electrospinning[J]. Materials Science and Engineering: C, 2016, 62: 879- 887
doi: 10.1016/j.msec.2016.02.028
|
| 26 |
郑高峰, 钟炜政, 姜佳昕, 等. 基于PEO电纺膜基底的近场直写聚焦及微图案脱离方法: 201910078347.0 [P]. 2020–02–10.
|
| 27 |
ANDRUKHOV O, HUBER R, SHI B, et al Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness[J]. Dental Materials, 2016, 32 (11): 1374- 1384
doi: 10.1016/j.dental.2016.08.217
|
| 28 |
XIE C, GAO Q, WANG P, et al Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers[J]. Materials and Design, 2019, 181: 108092
doi: 10.1016/j.matdes.2019.108092
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|