Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 530-541    DOI: 10.3785/j.issn.1008-973X.2023.03.011
土木工程     
富水砂土基坑渗水对侧墙变形和周边环境的影响
刘俊城1,2(),谭勇1,2,*(),宋享桦1,2,樊冬冬1,2,刘天任1,2
1. 同济大学 地下建筑与工程系,上海 200092
2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092
Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment
Jun-cheng LIU1,2(),Yong TAN1,2,*(),Xiang-hua SONG1,2,Dong-dong FAN1,2,Tian-ren LIU1,2
1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
 全文: PDF(2151 KB)   HTML
摘要:

依托富水砂土深基坑工程2次墙体严重渗水事故,通过现场调查和实测数据回顾,分析渗水期间基坑变形特性并总结事故原因. 建立三维流固耦合数值模型揭示渗水灾变机理,对墙体渗水多种复杂工况展开研究. 结果表明,富水砂土基坑渗水事故具有突发性,墙体1.075倍最终开挖深度处发生渗水可使墙后总水力梯度和水土压力分别突增至事故前的9.0~12.0倍和3.0~3.6倍,导致地连墙侧向位移快速增长. 相较于开挖面以下渗水工况,开挖面及以上墙体渗水引起的坑外地表沉降增量更大,最大增量处距坑边更近,且影响范围更大. 除了明显的承载和阻隔变形作用,隔离桩还能有效削弱渗水时动水力的作用,但当桩长超过最优临界值(1.6倍最终开挖深度)时,隔离桩保护效果的改善将不再明显.

关键词: 富水砂层深基坑渗水隔离桩数值模拟    
Abstract:

Based on two severe through-wall leaking accidents during deep excavations in water-rich sandy strata, the deformation behaviors of the excavation during leaking were investigated and the major causes incurring the accidents were summarized by field investigation and review of measured data. To reveal the disaster-causing mechanism of leakages, a 3D fluid-solid coupled numerical model was established and several leaking scenarios were analyzed. The results indicate that the leaking accidents occur suddenly during excavation in water-rich sandy strata. When the leakage takes place at 1.075 times the final excavation depth, the total hydraulic gradient and water-earth pressure behind the wall undergo a sudden increment up to 9-12 times and 3-3.6 times those before the incident, respectively, causing a rapid increase in lateral wall displacements. Compared with the case leaking below the excavation surface, a greater increment of ground settlement, a closer distance between the location at which the maximum increment happens and the excavation pit, and a larger affected region will be incurred for the cases where the through-wall leakages are exactly at or above the excavation surface. In addition to the obvious effects of load-bearing and isolating deformation, the dynamic seepage forces during leaking can also be weakened by the isolation piles. However, when the pile length exceeds the optimal value (1.6 times the final excavation depth), the improvement on protective effects of the isolation piles is no longer obvious.

Key words: water-rich sandy strata    deep excavation    leaking    isolation pile    numerical simulation
收稿日期: 2022-03-31 出版日期: 2023-03-31
CLC:  TU 476.3  
基金资助: 国家自然科学基金资助项目(42177179)
通讯作者: 谭勇     E-mail: liujuncheng@tongji.edu.cn;tanyong21th@tongji.edu.cn
作者简介: 刘俊城(1997—),男,博士生,从事基坑工程研究. orcid.org/0000-0002-4352-5072. E-mail: liujuncheng@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘俊城
谭勇
宋享桦
樊冬冬
刘天任

引用本文:

刘俊城,谭勇,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报(工学版), 2023, 57(3): 530-541.

Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/530

图 1  基坑监测点平面布置图和电视塔剖面示意图
图 2  车站场址水文地质剖面图
土层编号 土层名称 w/% γ/(kN·m?3) e Es0.1~0.2/MPa c/kPa φ/(°) KH/(cm·s?1) KV/(cm·s?1)
砂质粉土 30.7 18.4 0.870 8.49 7.7 22.0 2.64×10?5 5.22×10?5
③-1 砂质粉土夹粉砂 30.2 18.4 0.867 11.38 4.5 27.5 1.81×10?3 3.94×10?3
③-2 粉砂 29.0 18.6 0.832 12.96 4.6 32.0 1.27×10?3 4.39×10?3
④-2 粉质黏土夹粉土 33.6 18.1 0.968 5.57 11.0 18.5 4.19×10?6 2.78×10?5
④-2t 砂质粉土夹粉质黏土 31.2 18.3 0.898 8.43 6.3 21.0 2.13×10?4 9.79×10?4
⑤-1 粉砂夹粉土 30.0 18.4 0.874 9.67 5.2 30.0 4.83×10?4 2.35×10?3
⑤-2 砂质粉土夹粉质黏土 30.6 18.3 0.893 8.69 6.6 27.0 4.60×10?4 1.75×10?3
⑤-3 粉砂夹粉土 29.9 18.5 0.855 13.69 4.9 32.0 1.69×10?3 3.39×10?3
粉砂 28.0 18.7 0.809 15.38 2.9 35.0 3.22×10?3 6.64×10?3
表 1  场址土层物理力学参数
图 3  渗水点处基坑典型剖面
事故编号(埋深) 时间节点 事故描述
第1次渗水
(约21.5 m)
2020-11-01, 7:40 东侧端头井垫层下方约1.5 m处(详见图3)出现轻微冒水
2020-11-01, 8:30 冒水量突然增大但无砂土颗粒流出,施工单位立即组织抢险
2020-11-01, 9:30 坑内渗水点附近完成初步反压体堆码,坑外引孔注入聚氨酯止水
2020-11-01, 9:38 坑内出现大量聚氨酯,渗漏水得到控制
2020-11-01, 10:11 开始在坑外引孔注入水泥-水玻璃双液浆进行地层加固
2020-11-01, 12:00 渗水点停止冒水
第2次渗水
(约15.0 m)
2020-11-03, 10:00 第5道支撑预埋钢板位置(详见图3)发生渗漏水,大量清水从接缝裂隙处流出,施工单位随即采用木楔子堵漏,1 h后渗水得以控制
表 2  基坑2渗水事故发展过程
图 4  事故后现场止渗照片
图 5  地连墙侧向位移变化
图 6  地连墙最大侧向位移变化
图 7  电视塔沉降变化
图 8  场址观测井地下水位变化
图 9  各土层的渗透系数分布
图 10  基坑三维数值模型示意图
结构构件 $ {\gamma }_{\mathrm{s}\mathrm{e}} $/(kN·m?3) E/GPa υ
地连墙、隔离桩 25 34.5 0.22
电视塔桩、立柱桩 25 30.5 0.20
混凝土支撑 25 30.5 0.20
钢支撑 77 205 0.20
表 3  数值模型中结构构件参数
土层编号 $ {E}_{50}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa $ {E}_{\mathrm{o}\mathrm{e}\mathrm{d}}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa $ {E}_{\mathrm{u}\mathrm{r}}^{\mathrm{r}\mathrm{e}\mathrm{f}} $/MPa pref/(kN·m?2) Rf m ψ/(°) υ Rint
8.5 8.5 42.4 100 0.9 0.5 0 0.30 0.65
③-1 11.4 11.4 56.9 100 0.9 0.5 0 0.26 0.65
③-2 13.0 13.0 64.8 100 0.9 0.5 2 0.24 0.65
④-2 5.6 5.6 27.8 100 0.9 0.8 0 0.32 0.70
④-2t 8.4 8.4 42.2 100 0.9 0.5 0 0.30 0.65
⑤-1 9.7 9.7 4.8 100 0.9 0.5 0 0.25 0.65
⑤-2 8.7 8.7 43.4 100 0.9 0.8 0 0.27 0.70
⑤-3 13.7 13.7 68.4 100 0.9 0.5 2 0.26 0.65
15.4 15.4 76.9 100 0.9 0.5 5 0.23 0.65
表 4  硬化土体模型主要参数
图 11  渗水单元示意图
图 12  第1次墙体渗水数值模型验证
图 13  墙后总水力梯度分布
图 14  墙后水土压力和地连墙侧向位移
图 15  不同渗水位置对坑外地表沉降增量的影响
图 16  有无隔离桩工况下坑外地表沉降增量的变化
图 17  地下水流径分布
图 18  压力水头分布
图 19  点P相对增量随隔离桩桩长的变化
1 曾超峰, 王硕, 袁志成, 等 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报: 工学版, 2021, 55 (2): 338- 347
ZENG Chao-feng, WANG Shuo, YUAN Zhi-cheng, et al Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 338- 347
2 TAN Y, WANG D L, LU Y, et al Excavation of Middle Huai-Hai Road Station of Shanghai Metro Line 13: challenges, risks, countermeasures, and performance assessment[J]. Practice Periodical on Structural Design and Construction, 2017, 22 (3): 05017003
doi: 10.1061/(ASCE)SC.1943-5576.0000320
3 TAN Y, LU Y Forensic diagnosis of a leaking accident during excavation[J]. Journal of Performance of Constructed Facilities, 2017, 31 (5): 04017061
doi: 10.1061/(ASCE)CF.1943-5509.0001058
4 WU Y X, LYU H M, SHEN S L, et al A three-dimensional fluid-solid coupled numerical modeling of the barrier leakage below the excavation surface due to dewatering[J]. Hydrogeology Journal, 2020, 28: 1449- 1463
doi: 10.1007/s10040-020-02142-w
5 周红波, 蔡来炳 软土地区深基坑工程承压水风险与控制[J]. 同济大学学报: 自然科学版, 2015, 43 (1): 27- 32
ZHOU Hong-bo, CHAI Lai-bing Risk and control of the artesian water for deep excavation engineering in soft soil area[J]. Journal of Tongji University: Natural Science, 2015, 43 (1): 27- 32
6 NI J C, CHENG W C Characterizing the failure pattern of a station box of Taipei rapid transit system (TRTS) and its rehabilitation[J]. Tunnelling and Underground Space Technology, 2012, 32: 260- 272
doi: 10.1016/j.tust.2012.06.010
7 KORFF M, MAIR R J, TOL A F V, et al Building damage and repair due to leakage in a deep excavation[J]. Forensic Engineering, 2011, 164 (4): 165- 177
8 秦尚林, 王红亮, 克高果 深井降水基坑涌水涌砂原因分析及对策[J]. 岩土力学, 2005, 26 (Suppl.2): 271- 274
QING Shang-lin, WANG Hong-liang, KE Gao-guo Analysis of water and sand gushing out of a foundation pit and prevention countermeasures[J]. Rock and Soil Mechanics, 2005, 26 (Suppl.2): 271- 274
doi: 10.16285/j.rsm.2005.s2.065
9 蒋锋平, 刘国彬 深基坑地下墙漏水引起地面沉降分析[J]. 岩土工程学报, 2010, 32 (Suppl.2): 574- 577
JIANG Feng-ping, LIU Guo-bin Surface subsidence caused by water seeping through diaphragm wall of deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 574- 577
10 赵云非, 王晓琳 城市地铁深基坑施工渗漏水原因分析与预防[J]. 隧道建设, 2013, 33 (3): 242- 246
ZHAO Yun-fei, WANG Xiao-lin Cause analysis on and prevention of water seepages during construction of deep foundation pits of metro works in urban areas[J]. Tunnel Construction, 2013, 33 (3): 242- 246
11 WU Y X, SHEN S L, LYU H M, et al Analyses of leakage effect of waterproof curtain during excavation dewatering[J]. Journal of Hydrology, 2020, 583: 124582
doi: 10.1016/j.jhydrol.2020.124582
12 黄帆, 姚远, 张豪. 开挖条件下基坑渗流过程数值模拟研究 [C]// 2021年工业建筑学术交流会论文集(中册). 北京: [s.n.], 2021: 290-292+283.
HUANG Fan, YAO Yuan, ZHANG Hao. Numerical simulation of seepage process of foundation pit under excavation condition [C]// Proceedings of the 2021 Industrial Architecture Academic Exchange Conference (Volume 2). Beijing: [s.n.], 2021: 290-292+283.
13 樊冬冬, 刘祥勇, 景旭成, 等 南通富水砂性地层地铁深基坑墙体渗漏原因分析[J]. 隧道建设(中英文), 2020, 40 (Suppl.1): 225- 231
FAN Dong-dong, LIU Xiang-yong, JING Xun-cheng, et al Causes analysis on wall leaking of metro foundation pit in Nantong water-rich sandy stratum[J]. Tunnel Construction, 2020, 40 (Suppl.1): 225- 231
14 ZHENG G, DIAO Y Environmental impact of ground deformation caused by underground construction in China[J]. Japanese Geotechnical Society Special Publication, 2016, 2 (1): 10- 24
doi: 10.3208/jgssp.KL-2
15 HSIEH P G, OU C Y Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35 (6): 1007
16 郑刚, 杜一鸣, 刁钰 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3499- 3509
ZHENG Gang, DU Yi-ming, DIAO Yu Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3499- 3509
doi: 10.13722/j.cnki.jrme.2014.0235
17 翟杰群, 贾坚, 谢小林 隔离桩在深基坑开挖保护相邻建筑中的应用[J]. 地下空间与工程学报, 2010, 6 (1): 162- 166
ZHAI Jie-qun, JIA Jian, XIE Xiao-lin Practice of partition wall in the building protection projects near deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 162- 166
18 刘建航, 侯学渊, 刘国彬, 等. 基坑工程手册: 第2版[M]. 北京: 中国建筑工业出版社, 2009.
19 徐中华, 王卫东 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31 (1): 258- 264+326
XU Zhong-hua, WANG Wei-dong Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31 (1): 258- 264+326
doi: 10.3969/j.issn.1000-7598.2010.01.044
20 张飞, 李镜培, 唐耀 考虑土体硬化的基坑开挖性状及隆起稳定性分析[J]. 水文地质工程地质, 2012, 39 (2): 79- 84
ZHANG Fei, LI Jing-pei, TANG Yao Investigation of excavation characters and basal stability with considering soil hardening behavior[J]. Hydrogeology and Engineering Geology, 2012, 39 (2): 79- 84
doi: 10.16030/j.cnki.issn.1000-3665.2012.02.013
21 尚桌, 葛忻声, 王菁悦, 等. 深基坑水平封底在富水深厚砂层的加固效果 [J]. 太原理工大学学报, 2022, 53(4): 786-792.
SHANG Zhuo, GE Xin-sheng, WANG Jing-yue, et al. Reinforcement effect of horizontal bottom sealing of deep foundation pit in water-rich and deep sand layer [J]. Journal of Taiyuan University of Technology, 2022, 53(4): 786-792.
22 薛清鹏 基于土体硬化模型的紧邻铁路基坑变形分析[J]. 铁道工程学报, 2015, 32 (2): 39- 42+92
XUE Qing-peng Analysis of the deep excavations deformation close to the existing operating railway based on hardening-soil model[J]. Journal of Railway Engineering Society, 2015, 32 (2): 39- 42+92
23 吴波, 许杰, 黄惟, 等 富水砂层刚度参数敏感性分析及地表沉降预测[J]. 中国安全生产科学技术, 2020, 16 (9): 96- 102
WU Bo, XU Jie, HUANG Wei, et al Sensitivity analysis of stiffness parameter and prediction of ground settlement for watered sandy stratum[J]. Journal of Safety Science and Technology, 2020, 16 (9): 96- 102
[1] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[2] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[3] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[4] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[5] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[6] 闫腾飞,陈保国,张磊,贺洁星,张业勤. 深基坑地连墙支护体系动态调整方法及应用[J]. 浙江大学学报(工学版), 2022, 56(2): 356-367.
[7] 王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
[8] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[9] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.
[10] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[11] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[12] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[13] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[14] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.
[15] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.