Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (2): 356-367    DOI: 10.3785/j.issn.1008-973X.2022.02.017
土木与建筑工程、交通工程     
深基坑地连墙支护体系动态调整方法及应用
闫腾飞1(),陈保国1,*(),张磊1,贺洁星1,张业勤2
1. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
2. 中国水利水电第七工程局有限公司,四川 成都 610081
Dynamic adjustment method of diaphragm wall supporting system in deep foundation pit and its application
Teng-fei YAN1(),Bao-guo CHEN1,*(),Lei ZHANG1,Jie-xing HE1,Ye-qin ZHANG2
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Sinohydro Bureau 7 Limited Company, Chengdu 610081, China
 全文: PDF(2141 KB)   HTML
摘要:

深基坑地连墙支护体系工程变形与理论设计值之间存在较大差异且难于动态调整. 采用支护结构动态调整方法解决此问题,提出动态调整方法,并运用经实测数据验证后的数值模型研究深基坑地连墙支护体系协调变形规律,得出不同调整方案下支护体系受力、变形规律及协调变形曲线(即轴力-位移关系曲线). 基于弹性地基梁理论,给出反映支护结构动态调节思想的适用于多层支撑结构的支护体系力学解析模型. 研究发现,在工程中,更严格的位移控制不一定能够带来更安全的结果,应该寻找合理受力平衡点并将支护体系受力参数控制在最优区间内. 研究得到本工程支护体系受力参数最优区间,最大轴力与钢支撑屈服强度比值为0.32~0.38,墙体位移与开挖深度比值为0.80‰~0.92‰.

关键词: 深基坑地连墙内支撑动态调整协调变形土压力    
Abstract:

There is a great difference between the engineering deformation value and the theoretical design value of the diaphragm wall supporting system in deep foundation pit, and it is difficult to adjust dynamically. Thus, the dynamic adjustment method of supporting structure was adopted to solve the above problem. Using the numerical model verified by the measured data, the coordinated deformation law of the diaphragm wall support system in deep foundation pit was studied, and the stress deformation law and the coordinated deformation curve of the support system with different adjustment schemes were obtained. At the same time, based on elastic foundation beam theory, an analytical model of support system mechanics that reflects the dynamic adjustment of supporting structure and is suitable for multi-layer supporting structure was put forward. It is found that it is not that more strict displacement control can get safer results in engineering, but that reasonable stress balance point should be found and the stress parameters of support system should be controlled in the optimal range. The optimal range of mechanical parameters of the supporting system was obtained. The ratio of maximum axial force to yield strength of steel support was 0.32 to 0.38, and the ratio of wall displacement to excavation depth was 0.80‰ to 0.92‰.

Key words: deep foundation pit    diaphragm wall    internal support    dynamic adjustment    coordinated deformation    earth pressure
收稿日期: 2021-03-14 出版日期: 2022-03-03
CLC:  TU 476  
基金资助: 国家自然科学基金资助项目(52178370);中国地质大学(武汉)教学实验室开放基金资助项目(SKJ2019082)
通讯作者: 陈保国     E-mail: tengfei_yan@cug.edu.cn;baoguo_chen@126.com
作者简介: 闫腾飞(1995—),男,硕士生,从事城市地下空间工程研究. orcid.org/0000-0002-2268-9254. E-mail: tengfei_yan@cug.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
闫腾飞
陈保国
张磊
贺洁星
张业勤

引用本文:

闫腾飞,陈保国,张磊,贺洁星,张业勤. 深基坑地连墙支护体系动态调整方法及应用[J]. 浙江大学学报(工学版), 2022, 56(2): 356-367.

Teng-fei YAN,Bao-guo CHEN,Lei ZHANG,Jie-xing HE,Ye-qin ZHANG. Dynamic adjustment method of diaphragm wall supporting system in deep foundation pit and its application. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 356-367.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.017        https://www.zjujournals.com/eng/CN/Y2022/V56/I2/356

图 1  钢支撑轴力伺服系统
图 2  基坑模型试验装置及模型图
图 3  支撑伸缩对支护体系受力变形特性的影响
图 4  支护体系动态调节方法流程图
图 5  基坑标准断面
材料 E/MPa μ φ/(°) c/kPa ρ/(kg?m?3)
素填土 5 0.340 18.0 5.0 1780
砾质黏性土 10 0.300 23.5 27.5 1840
全风化粗粒花岗岩 55 0.300 27.5 30.0 1900
强风化粗粒花岗岩 400 0.300 30.0 35.0 1950
中风化粗粒花岗岩 2000 0.260 40.5 40.5 2400
地连墙 31.5×103 0.167 ? ? 2500
砼支撑(S1) 31.5×103 0.167 ? ? 2500
钢支撑(S2/S3/S4) 200.0×103 0.167 ? ? 7800
表 1  地层与支护体系材料参数
图 6  深基坑数值模型示意图
接触关系 kn / GPa ks / GPa c/kPa φ/(°) Ψ/(°)
土层-地连墙 3×105 3×105 0 28 0
表 2  地连墙与土体间接触面参数
图 7  开挖结束后支护体系受力变形特性对比曲线
图 8  S2、S3缩短10 mm方案下支护体系受力变形规律
图 9  S2~S4伸长10 mm方案下支护体系受力变形规律
工况 调整方式
A 调整S2的长度
B 调整S3的长度
C 调整S4的长度
D 调整S2和S3的长度
E 调整S2和S4的长度
F 调整S3和S4的长度
G 调整S2、S3和S4的长度
表 3  支护体系动态调整工况表
图 10  不同调整方案下地连墙水平位移
方案 土层1 土层2 土层3 土层4
A,伸 100%?5.4% 100% 100% 100%
A,缩 100%+5.4% 100% 100% 100%
B,伸 100%?1.5% 100%?1.3% 100%?0.3% 100%
B,缩 100%+1.5% 100%+1.6% 100%+0.3% 100%
C,伸 100%+0.2% 100%?1.4% 100%?2.5% 100%?1.6%
C,缩 100%?0.4% 100%+1.8% 100%+2.5% 100%+1.6%
D,伸 100%?6.2% 100%?1.3% 100%?0.2% 100%?0.4%
D,缩 100%+6.0% 100%+1.8% 100%+0.1% 100%+0.4%
E,伸 100%?5.0% 100%?1.7% 100%?2.4% 100%?1.6%
E,缩 100%+4.8% 100%+1.8% 100%+2.4% 100%+1.6%
F,伸 100%?0.8% 100%?3.1% 100%?2.8% 100%?1.2%
F,缩 100%+0.6% 100%+3.1% 100%+2.7% 100%+1.2%
G,伸 100%?6.0% 100%?3.1% 100%?2.6% 100%?1.2%
G,缩 100%+5.8% 100%+3.1% 100%+2.6% 100%+1.2%
表 4  各土层变形敏感值
图 11  不同调整方案下内支撑轴力
图 12  支护体系协调变形关系曲线
图 13  支护体系最佳受力点散点图
图 14  基于弹性地基梁法的计算模型示意图
1 FINNO R J, BLACKBURN J T, ROBOSKI J F Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (1): 30- 36
doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)
2 FENG S, WU Y, LI J, et al The analysis of spatial effect of deep foundation pit in soft soil areas[J]. Procedia Earth and Planetary Science, 2012, 5: 309- 313
3 CUI X Y, YE M G, YAN Z Performance of a foundation pit supported by bored piles and steel struts: a case study[J]. Soils and Foundations, 2018, 58 (4): 1016- 1027
doi: 10.1016/j.sandf.2018.05.004
4 刘念武, 陈奕天, 龚晓南, 等 软土深开挖致地铁车站基坑及邻近建筑变形特性研究[J]. 岩土力学, 2019, 40 (4): 1515- 1525
LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, et al Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil[J]. Rock and Soil Mechanics, 2019, 40 (4): 1515- 1525
5 XU Q, MA X, ZHU H, et al. Centrifuge study on ultra-deep foundation pit excavation in soft ground [C]// GeoShanghai International Conference. Shanghai: Geotechnical Special Publication, 2010: 292-299.
6 YANG X, LIU G Performance of a large-scale metro interchange station excavation in Shanghai soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143 (6): 05017003
doi: 10.1061/(ASCE)GT.1943-5606.0001681
7 WANG W, HAN Z, DENG J, et al Study on soil reinforcement param in deep foundation pit of marshland metro station[J]. Heliyon, 2019, 5 (11): e02836
doi: 10.1016/j.heliyon.2019.e02836
8 ZENG C F, ZHENG G, ZHOU X F, et al Behaviours of wall and soil during pre-excavation dewatering under different foundation pit widths[J]. Computers and Geotechnics, 2019, 115: 103169
doi: 10.1016/j.compgeo.2019.103169
9 ZHOU N Q, VERMEER P A, LOU R X, et al Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence[J]. Engineering Geology, 2010, 114 (3/4): 251- 260
10 ZHANG X, YANG J, ZHANG Y, et al Cause investigation of damages in existing building adjacent to foundation pit in construction[J]. Engineering Failure Analysis, 2018, 83: 117- 124
doi: 10.1016/j.engfailanal.2017.09.016
11 应宏伟, 程康, 俞建霖, 等 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报:工学版, 2021, 55 (2): 318- 329
YING Hong-wei, CHENG Kang, YU Jian-lin, et al Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 318- 329
12 ZHANG X M, OU X F, YANG J S, et al Deformation response of an existing tunnel to upper excavation of foundation pit and associated dewatering[J]. International Journal of Geomechanics, 2017, 17 (4): 04016112
doi: 10.1061/(ASCE)GM.1943-5622.0000814
13 ZHANG J, XIE R, ZHANG H Mechanical response analysis of the buried pipeline due to adjacent foundation pit excavation[J]. Tunnelling and Underground Space Technology, 2018, 78: 135- 145
doi: 10.1016/j.tust.2018.04.026
14 贾坚, 谢小林, 罗发扬, 等 控制深基坑变形的支撑轴力伺服系统[J]. 上海交通大学学报, 2009, 43 (10): 1589- 1594
JIA Jian, XIE Xiao-lin, LUO Fa-yang, et al Support axial force servo system in deep excavation deformation control[J]. Journal of Shanghai Jiaotong University, 2009, 43 (10): 1589- 1594
doi: 10.3321/j.issn:1006-2467.2009.10.016
15 徐中华, 宗露丹, 沈健, 等 邻近地铁隧道的软土深基坑变形实测分析[J]. 岩土工程学报, 2019, 41 (Suppl.1): 41- 44
XU Zhong-hua, ZONG Lu-dan, SHEN Jian, et al Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Suppl.1): 41- 44
16 孙九春, 白廷辉 软土地铁深基坑力学状态的施工控制系统研究[J]. 隧道建设:中英文, 2019, 39 (Suppl.2): 44- 52
SUN Jiu-chun, BAI Ting-hui Construction control system of mechanical state of metro deep foundation pit in soft soil[J]. Tunnel Construction, 2019, 39 (Suppl.2): 44- 52
17 殷一弘 深厚软土地层紧邻地铁深大基坑分区设计与实践[J]. 岩土工程学报, 2019, 41 (Suppl.1): 129- 132
YIN Yi-hong Design and practice of partitioning of deep large foundation pits close to subway in thick soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Suppl.1): 129- 132
18 DI H G, GUO H J, ZHOU S H, et al Investigation of the axial force compensation and deformation control effect of servo steel struts in a deep foundation pit excavation in soft clay[J]. Advances in Civil Engineering, 2019, (6): 1- 16
19 陈金铭, 狄宏规, 周顺华, 等 城市轨道交通车站基坑伺服钢支撑轴力补偿与开挖变形控制效果[J]. 城市轨道交通研究, 2020, 23 (10): 13- 16
CHEN Jin-ming, DI Hong-gui, ZHOU Shun-hua, et al Axial force compensation for urban rail transit station servo steel support and control effect of foundation pit excavation deformation[J]. Urban Mass Transit, 2020, 23 (10): 13- 16
20 黄彪, 李明广, 侯永茂, 等 轴力自补偿支撑对支护结构受力变形影响研究[J]. 岩土力学, 2018, 39 (Suppl.2): 359- 365
HUANG Biao, LI Ming-guang, HOU Yong-mao, et al Effect of auto-compensating steel struts on stress and deformation behaviors of supporting structures[J]. Rock and Soil Mechanics, 2018, 39 (Suppl.2): 359- 365
21 陈保国, 闫腾飞, 王程鹏, 等 深基坑地连墙支护体系协调变形规律试验研究[J]. 岩土力学, 2020, 41 (10): 3289- 3299
CHEN Bao-guo, YAN Teng-fei, WANG Cheng-peng, et al Experimental study on compatible deformation law of diaphragm wall support system for deep foundation pit[J]. Rock and Soil Mechanics, 2020, 41 (10): 3289- 3299
22 郑刚, 雷亚伟, 程雪松, 等 局部破坏对钢支撑排桩基坑支护体系影响的试验研究[J]. 岩土工程学报, 2019, 41 (8): 1390- 1399
ZHENG Gang, LEI Ya-wei, CHENG Xue-song, et al Experimental study on influences of local failure on steel-strutted pile retaining system of deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (8): 1390- 1399
23 MANA A I, CLOUGH G W Prediction of movements for braced cuts in clay[J]. Geotechnical Special Publication, 2002, 107 (118): 1840- 1858
24 王志杰, 李振, 蔡李斌, 等 基坑钢支撑伺服系统应用技术研究[J]. 隧道建设:中英文, 2020, 40 (Suppl.2): 10- 22
WANG Zhi-jie, LI Zhen, CAI Li-bin, et al Research on application technology of steel support servo system for foundation pit[J]. Tunnel Construction, 2020, 40 (Suppl.2): 10- 22
25 文璐, 狄宏规, 陈金铭, 等 软土基坑伺服钢支撑轴力变化对相邻支撑轴力与围护结构变形的影响[J]. 城市轨道交通研究, 2020, 23 (11): 88- 92
WEN Lu, DI Hong-gui, CHEN Jin-ming, et al Effect of axial force adjustment of servo steel struts on axial force of adjacent struts and enclosure structure deformation of foundation pit in soft soil[J]. Urban Mass Transit, 2020, 23 (11): 88- 92
[1] 郭雪源, 张明聚, 马栋, 黄立新, 王武现, 汪春生, 杨世鹏, 乔京生. 基坑工程首道内支撑采用P-CFST的工程实例研究[J]. 浙江大学学报(工学版), 2019, 53(1): 51-60.
[2] 康志军, 黄润秋, 卫彬, 谭勇. 上海软土地区某逆作法地铁深基坑变形[J]. 浙江大学学报(工学版), 2017, 51(8): 1527-1536.
[3] 谭勇, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1048-1055.
[4] 李大鹏,唐德高,闫凤国,黄牧. 深基坑空间效应机理及考虑其影响的土应力研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1632-1639.
[5] 应宏伟,章丽莎,谢康和,黄大中. 坑外地下水位波动引起的基坑水土压力响应[J]. J4, 2014, 48(3): 492-497.
[6] 马少俊,韩同春,黄福明,王奎华. 地震荷载作用下双层填土的主动土压力计算[J]. J4, 2012, 46(3): 470-475.
[7] 王志凯,夏唐代,陈炜昀. 刚性挡土墙地震主动土压力的拟动力学分析[J]. J4, 2012, 46(1): 46-51.
[8] 张忠苗, 谢志专, 刘俊伟, 俞峰. 淤质与粉质互层土中管桩沉桩过程的土压力[J]. J4, 2011, 45(8): 1430-1434.
[9] 王奎华,马少俊,吴文兵,胡学科. 挡土墙后双层黏性土的主动土压力计算[J]. J4, 2011, 45(7): 1288-1293.
[10] 朱剑锋, 徐日庆, 王兴陈. 基于扰动状态概念模型的刚性挡土墙土压力理论[J]. J4, 2011, 45(6): 1081-1087.
[11] 王奎华, 马少俊, 刘骏龙, 吴文兵. 一种包含库仑和朗肯理论的土压力计算方法[J]. J4, 2010, 44(5): 969-975.
[12] 徐日庆, 李昕睿, 朱剑锋. 刚性挡土墙平动模式下中间被动土压力的计算[J]. J4, 2010, 44(10): 2005-2009.
[13] 朱剑锋 徐日庆. 考虑时效和土拱效应桩锚基坑土压力计算方法[J]. , 2009, 43(4): 766-770.
[14] 章瑞文 徐日庆 郭印. 挡土墙墙后土体应力状态及土压力分布研究[J]. J4, 2008, 42(1): 111-115.
[15] 罗勇 龚晓南 吴瑞潜. 考虑渗流效应下基坑水土压力计算的新方法[J]. J4, 2007, 41(1): 157-160.