Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1606-1621    DOI: 10.3785/j.issn.1008-973X.2022.08.015
机械与能源工程     
时间演化分形流场的直接数值模拟
石均(),邱颖宁,周毅*()
南京理工大学 能源与动力工程学院,江苏 南京 210094
Direct numerical simulation of temporally evolving fractal-generated turbulence
Jun SHI(),Ying-ning QIU,Yi ZHOU*()
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
 全文: PDF(10991 KB)   HTML
摘要:

为了研究分形网格湍流中小尺度结构的运动规律,在具有高分辨率的空间网格中,开展分形流场时间演化的直接数值模拟,并通过模拟具有相同阻塞率的规则流场进行对比研究. 通过给流场中注入合适的能量扰动,促使2类流场从层流初始状态向湍流状态过渡. 数值模拟结果表明,与规则流场相比,分形流场受到初始条件影响的持续时间更久,同时在时间演化的初期,分形流场产生的动能更小,但分形流场在衰减期的大尺度运动起到强化湍流的作用,导致其产生的动能更大、湍流强度更高,有利于实现对流场的被动控制. 分形流场和规则流场均在截断波数 $ kM \approx 20 $时满足能量与耗散水平相等,但有别于能量级串过程中能量传输与耗散的平衡. 当流场达到统计均匀后,规则流场衰减符合Saffman湍流特征的规律.

关键词: 时间演化分形网格湍流直接数值模拟能量级串湍流控制    
Abstract:

The direct numerical simulation of temporal evolution of fractal flow field was performed in a high resolution spatial grid to study the characteristics of small scale motions in fractal-generated turbulence. An additional numerical simulation of regular-generated turbulence with the same blockage ratio was also performed for comparison. Random disturbances with appropriate energy distribution were imposed for a quick transition of the two types of flow fields from the laminar initial state to the turbulent state. Numerical results indicated that the fractal-generated turbulence can be significantly affected by the initial velocity conditions for a long time. And in the early stage of the temporally evolution, the kinetic energy generated by the fractal-generated turbulence was smaller, but the large-scale motions of the fractal-generated turbulence in the decay period played an important role in turbulence evolution, resulting in a larger kinetic energy level and a higher turbulence intensity compared with regular-generated turbulence. This observation contributes to the possible passive control of the fractal-generated turbulence. Both fractal-generated and regular-generated turbulence reached the same level of energy and dissipation at the wave number $ kM \approx 20 $, but it was different from the balance of energy transmission and dissipation in energy cascade process. Furthermore, when the regular-generated turbulence became statistically homogenous, the energy decay law was more or less consistent with the Saffman turbulence.

Key words: temporal evolution    fractal-generated turbulence    direct numerical simulation    energy cascade    turbulence control
收稿日期: 2021-08-08 出版日期: 2022-08-30
CLC:  O 357.5+1  
基金资助: 国家重点研发计划政府间国际科技新合作重点专项(2019YFE0104800)
通讯作者: 周毅     E-mail: jun@njust.edu.cn;yizhou@njust.edu.cn
作者简介: 石均(1996—),男,硕士生,从事流体力学与空气动力研究. orcid.org/0000-0002-4607-0675. E-mail: jun@njust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
石均
邱颖宁
周毅

引用本文:

石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.

Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.015        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1606

图 1  网格Y-Z平面示意图
工况类型 $ {N_{\text{f}}} $ $ \sigma $ $ R{e_{\text{M}}} $ $ {D_{\text{r}}} $ $ {T_{{\text{end}}}} $
分形网格 3 0.36 1600 9.5 500 $ M/{U_0} $
规则网格 1 0.36 1600 1.0 500 $ M/{U_0} $
表 1  计算模型及条件设置
网格类型 $ {M_0} $ $ {M_1} $ $ {M_2} $ $ {d_0}/{M_0} $ $ {d_1}/{M_1} $ $ {d_2}/{M_2} $ ${L_{X} }/{M_0}$ ${L_{Y} }/{M_0}$ ${L_{Z} }/{M_0}$ ${N_{X} } \times {N_{Y } } \times {N_{Z } }$
分形网格 4M 2M $ M $ 0.19 0.12 0.08 2 2 2 $ 800 \times 400 \times 400 $
规则网格 ? ? $ M $ ? ? 0.2 2 2 2 $ 800 \times 400 \times 400 $
表 2  2类网格的具体参数
图 2  以U0拖曳网格条产生的湍流效果
图 3  TGV的数值结果与解析解误差对比
图 4  中心线上空间分辨率的时间演化
图 5  FGT流向瞬时速度的时间演化
图 6  RGT流向瞬时速度的时间演化
图 7  FGT流向平均速度的时间演化
图 8  RGT流向平均速度的时间演化
图 9  FGT的瞬时涡量和第二不变量
图 10  RGT的瞬时涡量和第二不变量
图 11  RGT的统计特性的时间演化
图 12  中心线上流向平均速度的时间演化
图 13  网格1/4的Y-Z平面不同的(Y, Z)位置
图 14  FGT和RGT不同(Y, Z)位置统计特性的时间演化
图 15  网格中心线上流向均方根速度和泰勒雷诺数的时间演化
图 16  中心线上流向脉动速度偏导数的偏斜度和平坦度的时间演化
图 17  中心线上动能、耗散率、泰勒尺度和Kolmogorov长度尺度的时间演化
图 18  不同时刻下FGT和RGT的三维能谱
图 19  不同波数下动能和耗散率的时间演化
图 20  初始条件对FGT的影响
图 21  初始条件对RGT的影响
图 22  Saffman积分的时间演化
图 23  FGT和RGT的三维能谱与Saffman湍流能谱
1 路甬祥 仿生学的科学意义与前沿: 仿生学的意义与发展[J]. 科学中国人, 2004, (4): 22- 24
LU Yong-xiang The scientific significance and frontier of bionics: the significance and development of bionics[J]. Scientific Chinese, 2004, (4): 22- 24
2 MANDELBROT B B. The fractal geometry of nature[M]. New York: WH freeman, 1982.
3 FERKO K, LACHENDRO D, CHIAPPAZZI N, et al. Interaction of side-by-side fluidic harvesters in fractal grid-generated turbulence [C]// Active and Passive Smart Structures and Integrated Systems XII. Denver: International Society for Optics and Photonics, 2018: 105951E.
4 STEIROS K, BRUCE P J K, BUXTON O R H, et al Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank[J]. AIChE Journal, 2017, 63 (2): 843- 854
doi: 10.1002/aic.15414
5 SPONFELDNER T, SOULOPOULOS N, BEYRAU F, et al The structure of turbulent flames in fractal and regular-grid generated turbulence[J]. Combustion and Flame, 2015, 162 (9): 3379- 3393
doi: 10.1016/j.combustflame.2015.06.004
6 COMTE-BELLOT G, CORRSIN S The use of a contraction to improve the isotropy of grid-generated turbulence[J]. Journal of Fluid Mechanics, 1966, 25 (4): 657- 682
doi: 10.1017/S0022112066000338
7 ANTONIA R A, ZHOU T, ZHU Y Three-component vorticity measurements in a turbulent grid flow[J]. Journal of Fluid Mechanics, 1998, 374: 29- 57
doi: 10.1017/S0022112098002547
8 SEOUD R E, VASSILICOS J C Dissipation and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (10): 105108
doi: 10.1063/1.2795211
9 MAZELLIER N, VASSILICOS J C Turbulence without Richardson-Kolmogorov cascade[J]. Physics of Fluids, 2010, 22 (7): 075101
doi: 10.1063/1.3453708
10 LAVOIE P, BURATTINI P, DJENIDI L, et al Effect of initial conditions on decaying grid turbulence at low Rλ [J]. Experiments in Fluids, 2005, 39 (5): 865- 874
doi: 10.1007/s00348-005-0022-8
11 LAVOIE P, DJENIDI L, ANTONIA R A Effects of initial conditions in decaying turbulence generated by passive grids[J]. Journal of Fluid Mechanics, 2007, 585: 395- 420
doi: 10.1017/S0022112007006763
12 严磊, 朱乐东 格栅湍流场风参数沿风洞轴向变化规律[J]. 实验流体力学, 2015, 29 (1): 49- 54
YAN Lei, ZHU Le-le Wind characteristics of grid-generated wind field along the wind tunnel.[J]. Journal of Experiments in Fluid Mechanics, 2015, 29 (1): 49- 54
doi: 10.11729/syltlx20140075
13 周蓉 被动格栅紊流场横向风速相关性实验研究[J]. 低温建筑技术, 2013, 35 (12): 51- 53
ZHOU Rong Experimental research on coherence of lateral wind velocity in passive grid-generated wind field[J]. Low Temperature Architecture Technology, 2013, 35 (12): 51- 53
doi: 10.3969/j.issn.1001-6864.2013.12.021
14 MAZZI B, VASSILICOS J C Fractal-generated turbulence[J]. Journal of Fluid Mechanics, 2004, 502: 65- 87
doi: 10.1017/S0022112003007249
15 LAIZET S, VASSILICOS J C Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing[J]. Physical Review E, 2012, 86 (4): 046302
doi: 10.1103/PhysRevE.86.046302
16 LAIZET S, VASSILICOS J C Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient[J]. Journal of Fluid Mechanics, 2015, 764: 52- 75
doi: 10.1017/jfm.2014.695
17 LAIZET S, VASSILICOS J C DNS of fractal-generated turbulence[J]. Flow, Turbulence and Combustion, 2011, 87 (4): 673- 705
doi: 10.1007/s10494-011-9351-2
18 LAIZET S, VASSILICOS J C. Direct numerical simulations of turbulent flows generated by regular and fractal grids using an immersed boundary method [C]// 6th International Symposium on Turbulence and Shear Flow Phenomena. Seoul : Begel House Inc, 2009.
19 NAGATA K, SUZUKI H, SAKAI Y, et al Direct numerical simulation of turbulent mixing in grid-generated turbulence[J]. Physica Scripta, 2008, (T132): 014054
20 SUZUKI H, NAGATA K, SAKAI Y, et al. DNS on a spatially developing grid turbulence [C]// Journal of Physics: Conference Series. [s. l. ]: IOP Publishing, 2011, 318(3): 032043.
21 DA SILVA C B, PEREIRA J C F Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets[J]. Physics of Fluids, 2008, 20 (5): 055101
doi: 10.1063/1.2912513
22 VAN REEUWIJK M, HOLZNER M The turbulence boundary of a temporal jet[J]. Journal of Fluid Mechanics, 2014, 739: 254- 275
doi: 10.1017/jfm.2013.613
23 DIAMESSIS P J, SPEDDING G R, DOMARADZKI J A Similarity scaling and vorticity structure in high Reynolds number stably stratified turbulent wakes[J]. Journal of Fluid Mechanics, 2011, 671: 52- 95
doi: 10.1017/S0022112010005549
24 GAMPERT M, BOSCHUNG J, HENNIG F, et al The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface[J]. Journal of Fluid Mechanics, 2014, 750: 578- 596
doi: 10.1017/jfm.2014.280
25 SMYTH W D, MOUM J N Length scales of turbulence in stably stratified mixing layers[J]. Physics of Fluids, 2000, 12 (6): 1327- 1342
doi: 10.1063/1.870385
26 WATANABE T, ZHANG X, NAGATA K Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers[J]. Physics of Fluids, 2018, 30 (3): 035102
doi: 10.1063/1.5022423
27 WATANABE T, NAGATA K Integral invariants and decay of temporally developing grid turbulence[J]. Physics of Fluids, 2018, 30 (10): 105111
doi: 10.1063/1.5045589
28 HUSSAINI M Y, ZANG T A Spectral methods in fluid dynamics[J]. Annual Review of Fluid Mechanics, 1987, 19 (1): 339- 367
doi: 10.1146/annurev.fl.19.010187.002011
29 NAGATA K, SUZUKI H, SAKAI Y, et al. Direct numerical simulation of turbulence with scalar transfer around complex geometries using the immersed boundary method and fully conservative higher-order finite-difference schemes [M]// Numerical Simulations Examples and Applications in Computational Fluid Dynamics. [s. l. ] : IntechOpen, 2010, Chap. 3.
30 LAIZET S, VASSILICOS J C Multiscale generation of turbulence[J]. Journal of Multiscale Modelling, 2009, 1 (1): 177- 196
doi: 10.1142/S1756973709000098
31 KEMPF A, KLEIN M, JANICKA J Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries[J]. Flow, Turbulence and Combustion, 2005, 74 (1): 67- 84
doi: 10.1007/s10494-005-3140-8
32 KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in grid turbulence at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2014, 738: 378- 406
doi: 10.1017/jfm.2013.595
33 LAIZET S, LAMBALLAIS E High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy[J]. Journal of Computational Physics, 2009, 228 (16): 5989- 6015
doi: 10.1016/j.jcp.2009.05.010
34 SENGUPTA T K, SHARMA N, SENGUPTA A Non-linear instability analysis of the two-dimensional Navier-Stokes equation: the Taylor-Green vortex problem[J]. Physics of Fluids, 2018, 30 (5): 054105
doi: 10.1063/1.5024765
35 LAIZET S, NEDIĆ J, VASSILICOS J C Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid[J]. International Journal of Computational Fluid Dynamics, 2015, 29 (3−5): 286- 302
doi: 10.1080/10618562.2015.1058371
36 MOIN P, MAHESH K Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30 (1): 539- 578
doi: 10.1146/annurev.fluid.30.1.539
37 ZHOU Y, NAGATA K, SAKAI Y, et al Enstrophy production and dissipation in developing grid-generated turbulence[J]. Physics of Fluids, 2016, 28 (2): 025113
doi: 10.1063/1.4941855
38 LAIZET S, VASSILICOS J C. Direct numerical simulation of fractal-generated turbulence [M]// Direct and large Eddy simulation VII. [s. l. ] : Springer, Dordrecht, 2010: 17-23.
39 MELINA G, BRUCE P J K, VASSILICOS J C Vortex shedding effects in grid-generated turbulence[J]. Physical Review Fluids, 2016, 1 (4): 044402
doi: 10.1103/PhysRevFluids.1.044402
40 NAGATA K, SAIKI T, SAKAI Y, et al Effects of grid geometry on non-equilibrium dissipation in grid turbulence[J]. Physics of Fluids, 2017, 29 (1): 015102
doi: 10.1063/1.4973416
41 DICKEY T D, MELLOR G L Decaying turbulence in neutral and stratified fluids[J]. Journal of Fluid Mechanics, 1980, 99 (1): 13- 31
doi: 10.1017/S002211208000047X
42 LIU H T Energetics of grid turbulence in a stably stratified fluid[J]. Journal of Fluid Mechanics, 1995, 296: 127- 157
doi: 10.1017/S0022112095002084
43 ZHOU Y, NAGATA K, SAKAI Y, et al Relevance of turbulence behind the single square grid to turbulence generated by regular-and multiscale-grids[J]. Physics of Fluids, 2014, 26 (7): 075105
doi: 10.1063/1.4890746
44 ZHOU Y, NAGATA K, SAKAI Y, et al Development of turbulence behind the single square grid[J]. Physics of Fluids, 2014, 26 (4): 045102
doi: 10.1063/1.4870167
45 HURST D, VASSILICOS J C Scalings and decay of fractal-generated turbulence[J]. Physics of Fluids, 2007, 19 (3): 035103
doi: 10.1063/1.2676448
46 ANTONIA R A, ORLANDI P Similarity of decaying isotropic turbulence with a passive scalar[J]. Journal of Fluid Mechanics, 2004, 505: 123- 151
doi: 10.1017/S0022112004008456
47 BURATTINI P, LAVOIE P, ANTONIA R A Velocity derivative skewness in isotropic turbulence and its measurement with hot wires[J]. Experiments in Fluids, 2008, 45 (3): 523- 535
doi: 10.1007/s00348-008-0495-3
48 ZHOU Y, NAGATA K, SAKAI Y, et al Energy transfer in turbulent flows behind two side-by-side square cylinders[J]. Journal of Fluid Mechanics, 2020, 903 (A4): 1- 31
49 TAYLOR G I Statistical theory of turbulence-II[J]. Proceedings of the ROYAL SOCIETY of London. Series A, Mathematical and Physical Sciences, 1935, 151 (873): 444- 454
50 GOTO S, VASSILICOS J C Local equilibrium hypothesis and Taylor’s dissipation law[J]. Fluid Dynamics Research, 2016, 48 (2): 021402
doi: 10.1088/0169-5983/48/2/021402
51 ALEXANDROVA O, CARBONE V, VELTRI P, et al Small-scale energy cascade of the solar wind turbulence[J]. The Astrophysical Journal, 2008, 674 (2): 1153
doi: 10.1086/524056
52 SAFFMAN P G The large-scale structure of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1967, 27 (3): 581- 593
doi: 10.1017/S0022112067000552
53 BATCHELOR G K, PROUDMAN I The large-scale structure of homogenous turbulence[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1956, 248 (949): 369- 405
doi: 10.1098/rsta.1956.0002
54 KROGSTAD P Å, DAVIDSON P A Is grid turbulence Saffman turbulence?[J]. Journal of Fluid Mechanics, 2010, 642: 373- 394
doi: 10.1017/S0022112009991807
55 北村拓也, 長田孝二, 酒井康彦, 等 格子乱流のエネルギー減衰域における不変量について[J]. 日本機械学会論文集 B 編, 2012, 78 (795): 1928- 1941
KITAMURA T, NAGATA K, SAKAI Y, et al On invariants in energy decay region in grid turbulence[J]. Transactions of the Japan Society of Mechanical Engineers. B, 2012, 78 (795): 1928- 1941
doi: 10.1299/kikaib.78.1928
[1] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[2] 余钊圣, 王宇, 邵雪明, 吴腾虎. 中性悬浮大颗粒对湍槽流影响的数值研究[J]. J4, 2013, 47(1): 109-115.
[3] 陈凯,余钊圣,邵雪明. 多孔介质方腔自然对流的直接数值模拟[J]. J4, 2012, 46(3): 549-554.
[4] 闫洁 李文春 樊建人 岑可法. 绕流中颗粒与柱体碰撞和磨损的直接数值模拟[J]. J4, 2007, 41(4): 589-593.
[5] 陈懿 樊建人 任安禄 岑可法. 三维气固圆柱绕流颗粒扩散的直接数值模拟[J]. J4, 2007, 41(3): 484-488.