航空航天技术 |
|
|
|
|
基于高斯过程回归的空天飞行器多精度气动建模方法 |
季廷炜(),查旭,谢芳芳*(),吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀 |
浙江大学 航空航天学院,浙江 杭州 310027 |
|
Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression |
Ting-wei JI(),Xu ZHA,Fang-fang XIE*(),Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG |
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
引用本文:
季廷炜,查旭,谢芳芳,吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀. 基于高斯过程回归的空天飞行器多精度气动建模方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2314-2324.
Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.019
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2314
|
1 |
刘鹏, 宁国栋, 王晓峰, 等 从SR-72项目看美国高超声速平台研究现状[J]. 飞航导弹, 2013, 12 (12): 3- 9 LIU Peng, NING Guo-dong, WANG Xiao-feng, et al The research status of American hypersonic platform from the perspective of SR-72 project[J]. Flying Missile, 2013, 12 (12): 3- 9
doi: 10.16338/j.issn.1009-1319.2013.12.010
|
2 |
曾慧, 白菡尘, 朱涛 X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术, 2010, 12 (1): 57- 61 ZENG Hui, BAI Han-chen, ZHU Tao X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010, 12 (1): 57- 61
|
3 |
DENG Y D, HUANG S H, YANG J M, et al A preliminary investigation on aerodynamic characteristics of an X-51A-like aircraft model[J]. Acta Aerodynamica Sinica, 2013, 31 (3): 376- 380
|
4 |
雪松 从"银乌"到航天飞机: 20世纪50年代到80年代的美国助推-滑翔技术发展[J]. 兵器, 2017, 12 (8): 55- 58 XUE Song From "silver crow" to the space shuttle: the development of American boost-gliding technology from the 1950s to the 1980s[J]. Weapon, 2017, 12 (8): 55- 58
|
5 |
唐志共, 张益荣, 陈坚强, 等 更准确、更精确、更高效—高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36 (1): 120- 134 TANG Zhi-gong, ZHANG Yi-rong, CHEN Jian-qiang, et al More accurate, more precise, more efficient-research progress in numerical simulation of hypersonic flow[J]. Journal of Aeronautics and Astronautics, 2015, 36 (1): 120- 134
|
6 |
PETROSINO F, FUMO M, PEZZELLA G, et al. Aerodynamic performances of USV3 CIRA re-entry vehicle[C]// 63rd International Astronautical Congress. Naples: IAF, 2012.
|
7 |
马率, 张露, 刘钒, 等 类X-37B航天器气动力天地相关性数值模拟[J]. 航空学报, 2021, 42 (2): 40- 49 MA Shuai, ZHANG Lu, LIU Fan, et al Numerical simulation of aerodynamic space-earth correlation of X-37B-like spacecraft[J]. Journal of Aeronautics and Astronautics, 2021, 42 (2): 40- 49
|
8 |
何开锋, 钱炜祺, 汪清, 等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报, 2014, 32(6): 777-782. HE Kai-feng, QIAN Wei-qi, WANG Qing, et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica, 2014, 32(6): 777-782.
|
9 |
杜涛, 陈闽慷, 李凰立, 等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报, 2018, 36(2): 315-319. DU Tao, CHEN Min-kang, LI Huang-li, et al. Research on adaptive preconditioning method for variable complexity mode[J]. Acta Aerodynamics Sinica, 2018, 36(2): 315-319.
|
10 |
MEYSAM M A, ENTEZARI M M, ALIREZA A. An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles[J]. Advances in Space Research, 2018, 62(5):997-1014.
|
11 |
BELYAEV M, BURNAEV E, KAPUSHEV E, et al. Surrogate models for spacecraft aerodynamic problems[C]// 11th World Congress on Computational Mechanics. Barcelona: [s.n.], 2014.
|
12 |
QI Z, PING J, SHAO X, et al A variable fidelity information fusion method based on radial basis function[J]. Advanced Engineering Informatics, 2017, 32 (4): 26- 39
|
13 |
王文正, 桂业伟, 何开锋,等. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报, 2009, 27(5): 524-528. WANG Wen-zheng, GUI Ye-wei, HE Kai-feng, et al. Aerodynamic data fusion technique exploration[J]. Acta Aerodynamics Sinica, 2009, 27(5): 524-528.
|
14 |
CHEN C, ZUO Y, YE W, et al. Learning properties of ordered and disordered materials from multi-fidelity data[J]. Nature Computational Science; 2021, 1(1): 46-53.
|
15 |
PANG G, LIU Y, KARNIADAKIS G E Neural-net-induced Gaussian process regression for function approximation and PDE solution[J]. Journal of Computational Physics, 2019, 384: 270- 288
doi: 10.1016/j.jcp.2019.01.045
|
16 |
KENNEDY M C, O'HAGAN A Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87 (1): 1- 13
doi: 10.1093/biomet/87.1.1
|
17 |
BABAEE H, PERDIKARIS P, CHRYSSOSROMIDIS C, et al. Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations[J]. Journal of Fluid Mechanics, 2016, 809: 895-917.
|
18 |
PARUSSINI L, VENTURI D, PERDIKARIS P, et al Multi-fidelity Gaussian process regression for prediction of random fields[J]. Journal of Computational Physics, 2017, 336: 36- 50
doi: 10.1016/j.jcp.2017.01.047
|
19 |
PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford university unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013.
|
20 |
PERDIKARIS P, RAISSI M, DAMIANOU A, et al Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473 (2198): 20160751
doi: 10.1098/rspa.2016.0751
|
21 |
杨炳尉 标准大气参数的公式表示[J]. 宇航学报, 1983, 4 (1): 86- 89 YANG Bing-wei Formula representation of standard atmospheric parameters[J]. Acta Astronautica, 1983, 4 (1): 86- 89
|
22 |
PEZZELLA G, VIVIANI A Aerodynamic performance analysis of a winged re-entry vehicle from hypersonic down to subsonic speed[J]. Aerospace Ence and Technology, 2016, 52 (5): 129- 143
|
23 |
PEZZELLA G Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed[J]. Acta Astronautica, 2011, 69 (3/4): 209- 222
doi: 10.1016/j.actaastro.2011.03.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|