Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2314-2324    DOI: 10.3785/j.issn.1008-973X.2023.11.019
航空航天技术     
基于高斯过程回归的空天飞行器多精度气动建模方法
季廷炜(),查旭,谢芳芳*(),吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀
浙江大学 航空航天学院,浙江 杭州 310027
Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression
Ting-wei JI(),Xu ZHA,Fang-fang XIE*(),Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3191 KB)   HTML
摘要:

为了满足空天飞行器在初步设计阶段宽速域、大空域模型的需求,将传统工程估算方法和计算流体动力学(CFD)数值模拟方法分别作为低精度和高精度气动数据来源,基于高斯过程回归模型提出独立于构型的空天飞行器气动性能多精度气动建模方法. 在工程估算方法中,以面元法为基础,建立空天飞行器气动力快速估算模型. 在CFD数值模拟中通过求解三维可压缩Euler方程实现空天飞行器气动高精度计算. 将所提出的多精度气动建模方法应用于FTB外形的双参数气动建模问题中,通过对比分析,发现所提出的多精度气动模型的预测精度、稳定性均优于用同等数量高精度样本构建的单精度代理模型的,预测的相对误差小于1%. 将多精度气动模型作为该空天飞行器再入问题气动数据来源,对比分析单、多精度建模方法对再入轨迹仿真的影响,发现所提出的空天飞行器多精度气动建模方法能够更加快速、准确地给出轨迹仿真所需的气动数据.

关键词: 空天飞行器气动性能分析多精度数值模拟高斯过程回归    
Abstract:

A multi-fidelity aerodynamic modeling method of aerospace vehicles with shape configuration independent was proposed based on Gaussian process regression model, in order to satisfy the demand of full speed domain and large airspace of aerospace vehicle in the preliminary design stage. The traditional engineering estimation method and computational fluid dynamics (CFD) numerical simulation method were treated as the data sources of low-fidelity and high-fidelity aerodynamic characteristics, respectively. Specifically, a fast estimation model for aerodynamics of aerospace vehicles was established by using the panel method in the enigineering estimation method. Then, high-fidelity aerodynamic performance of aerospace vehicles was achieved based on the three-dimensional compressible Euler equations in the CFD numerical simulation. Moreover, the developed multi-fidelity aerodynamic modeling method was validated by the dual-parameter problems of FTB. The prediction accuracy and stability of the developed multi-fidelity aerodynamic model were better than that of the single-fidelity surrogate model with the same number of high-fidelity data points through comparison and analysis. Meanwhile, the relative error of prediction was less than 1%. The multi-fidelity aerodynamic model was used as the source of aerodynamic data for the reentry problem of the aerospace vehicle, and the influence of single fidelity and multi-fidelity modeling methods on the simulation of re-entry trajectory was compared and analyzed. Results show that the proposed multi-fidelity aerodynamic model can fast provide a high accurate aerodynamic data required from trajectory simulation.

Key words: aerospace vehicle    aerodynamic performance analysis    multi-fidelity    numerical simulation    Gaussian process regression
收稿日期: 2022-08-16 出版日期: 2023-12-11
CLC:  V 411.8  
基金资助: 国家自然科学基金资助项目(92271107);浙江省自然科学基金资助项目(LY21A020010);中央高校基本科研业务费资助项目(226-2022-00155)
通讯作者: 谢芳芳     E-mail: zjjtw@zju.edu.cn;fangfang_xie@zju.edu.cn
作者简介: 季廷炜(1983—),男,副研究员,硕导,从事飞行器优化设计研究. orcid.org/0000-0001-7556-6867. E-mail: zjjtw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
季廷炜
查旭
谢芳芳
吴雨思
张鑫帅
蒋逸阳
杜昌平
郑耀

引用本文:

季廷炜,查旭,谢芳芳,吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀. 基于高斯过程回归的空天飞行器多精度气动建模方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2314-2324.

Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.019        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2314

图 1  快速预测方法的基本流程
图 2  高低精度模型的计算精度与成本分布
图 3  0~70 km高度的大气密度模型
图 4  FTB模型三视图
图 5  升、阻力系数的计算结果对比
气动系数 $ {\bar \varepsilon _{{\rm{en}}}} $ $ {\bar \varepsilon _{{\rm{CFD}}}} $ $ \eta $/%
Cl 0.02763 0.02222 3.53
Cd 0.01203 0.00411 9.56
表 1  2种方法求解气动系数的平均误差对比
方法 Ns CPU配置 NC t
CFD数值模拟 1997434 Intel(R) Xeon(R) Platinum 8175M CPU @ 2.50 GHz 45 1.79 h
基于工程估算的
快速预测方法
5912 Intel(R) Core(TM)
i5-8400 CPU @ 2.80 GHz
1 0.58 s
表 2  2种方法求解气动系数的计算成本对比
图 6  多精度气动建模流程
图 7  不同高精度样本数量下升力系数的高精度样本与多精度预测值间的相关性
图 8  多精度升力系数模型的误差云图
图 9  不同数量高精度样本下升力系数的测试集数据与多精度预测值的相关性
N ${ {\rm{lg } } }\left( { { {\bar \varepsilon }^2} } \right)$
单精度GPR 多精度GPR
4 ?1.286 ?3.097
9 ?2.325 ?4.281
18 ?2.149 ?4.245
35 ?5.623 ?6.082
42 ?5.733 ?6.083
表 3  多精度升力系数模型的平方误差的平均值
N ${\lg}\;\left( {{\sigma _{{{\bar \varepsilon }^2}}}} \right)$
单精度GPR 多精度GPR
4 ?2.337 ?6.225
9 ?4.407 ?8.059
18 ?4.011 ?7.966
35 ?10.956 ?11.515
42 ?11.146 ?11.367
表 4  多精度升力系数模型的平方误差的方差
图 10  升、阻力系数的多精度建模结果云图
图 11  再入轨迹仿真流程
图 12  基于单、多精度气动模型的再入特征曲线及偏差比较
1 刘鹏, 宁国栋, 王晓峰, 等 从SR-72项目看美国高超声速平台研究现状[J]. 飞航导弹, 2013, 12 (12): 3- 9
LIU Peng, NING Guo-dong, WANG Xiao-feng, et al The research status of American hypersonic platform from the perspective of SR-72 project[J]. Flying Missile, 2013, 12 (12): 3- 9
doi: 10.16338/j.issn.1009-1319.2013.12.010
2 曾慧, 白菡尘, 朱涛 X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术, 2010, 12 (1): 57- 61
ZENG Hui, BAI Han-chen, ZHU Tao X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010, 12 (1): 57- 61
3 DENG Y D, HUANG S H, YANG J M, et al A preliminary investigation on aerodynamic characteristics of an X-51A-like aircraft model[J]. Acta Aerodynamica Sinica, 2013, 31 (3): 376- 380
4 雪松 从"银乌"到航天飞机: 20世纪50年代到80年代的美国助推-滑翔技术发展[J]. 兵器, 2017, 12 (8): 55- 58
XUE Song From "silver crow" to the space shuttle: the development of American boost-gliding technology from the 1950s to the 1980s[J]. Weapon, 2017, 12 (8): 55- 58
5 唐志共, 张益荣, 陈坚强, 等 更准确、更精确、更高效—高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36 (1): 120- 134
TANG Zhi-gong, ZHANG Yi-rong, CHEN Jian-qiang, et al More accurate, more precise, more efficient-research progress in numerical simulation of hypersonic flow[J]. Journal of Aeronautics and Astronautics, 2015, 36 (1): 120- 134
6 PETROSINO F, FUMO M, PEZZELLA G, et al. Aerodynamic performances of USV3 CIRA re-entry vehicle[C]// 63rd International Astronautical Congress. Naples: IAF, 2012.
7 马率, 张露, 刘钒, 等 类X-37B航天器气动力天地相关性数值模拟[J]. 航空学报, 2021, 42 (2): 40- 49
MA Shuai, ZHANG Lu, LIU Fan, et al Numerical simulation of aerodynamic space-earth correlation of X-37B-like spacecraft[J]. Journal of Aeronautics and Astronautics, 2021, 42 (2): 40- 49
8 何开锋, 钱炜祺, 汪清, 等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报, 2014, 32(6): 777-782.
HE Kai-feng, QIAN Wei-qi, WANG Qing, et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica, 2014, 32(6): 777-782.
9 杜涛, 陈闽慷, 李凰立, 等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报, 2018, 36(2): 315-319.
DU Tao, CHEN Min-kang, LI Huang-li, et al. Research on adaptive preconditioning method for variable complexity mode[J]. Acta Aerodynamics Sinica, 2018, 36(2): 315-319.
10 MEYSAM M A, ENTEZARI M M, ALIREZA A. An efficient surrogate-based framework for aerodynamic database development of manned reentry vehicles[J]. Advances in Space Research, 2018, 62(5):997-1014.
11 BELYAEV M, BURNAEV E, KAPUSHEV E, et al. Surrogate models for spacecraft aerodynamic problems[C]// 11th World Congress on Computational Mechanics. Barcelona: [s.n.], 2014.
12 QI Z, PING J, SHAO X, et al A variable fidelity information fusion method based on radial basis function[J]. Advanced Engineering Informatics, 2017, 32 (4): 26- 39
13 王文正, 桂业伟, 何开锋,等. 基于数学模型的气动力数据融合研究[J]. 空气动力学学报, 2009, 27(5): 524-528.
WANG Wen-zheng, GUI Ye-wei, HE Kai-feng, et al. Aerodynamic data fusion technique exploration[J]. Acta Aerodynamics Sinica, 2009, 27(5): 524-528.
14 CHEN C, ZUO Y, YE W, et al. Learning properties of ordered and disordered materials from multi-fidelity data[J]. Nature Computational Science; 2021, 1(1): 46-53.
15 PANG G, LIU Y, KARNIADAKIS G E Neural-net-induced Gaussian process regression for function approximation and PDE solution[J]. Journal of Computational Physics, 2019, 384: 270- 288
doi: 10.1016/j.jcp.2019.01.045
16 KENNEDY M C, O'HAGAN A Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87 (1): 1- 13
doi: 10.1093/biomet/87.1.1
17 BABAEE H, PERDIKARIS P, CHRYSSOSROMIDIS C, et al. Multi-fidelity modelling of mixed convection based on experimental correlations and numerical simulations[J]. Journal of Fluid Mechanics, 2016, 809: 895-917.
18 PARUSSINI L, VENTURI D, PERDIKARIS P, et al Multi-fidelity Gaussian process regression for prediction of random fields[J]. Journal of Computational Physics, 2017, 336: 36- 50
doi: 10.1016/j.jcp.2017.01.047
19 PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford university unstructured (SU2): an open-source integrated computational environment for multi-physics simulation and design[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013.
20 PERDIKARIS P, RAISSI M, DAMIANOU A, et al Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473 (2198): 20160751
doi: 10.1098/rspa.2016.0751
21 杨炳尉 标准大气参数的公式表示[J]. 宇航学报, 1983, 4 (1): 86- 89
YANG Bing-wei Formula representation of standard atmospheric parameters[J]. Acta Astronautica, 1983, 4 (1): 86- 89
22 PEZZELLA G, VIVIANI A Aerodynamic performance analysis of a winged re-entry vehicle from hypersonic down to subsonic speed[J]. Aerospace Ence and Technology, 2016, 52 (5): 129- 143
23 PEZZELLA G Aerodynamic and aerothermodynamic trade-off analysis of a small hypersonic flying test bed[J]. Acta Astronautica, 2011, 69 (3/4): 209- 222
doi: 10.1016/j.actaastro.2011.03.004
[1] 刘俊城,谭勇,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报(工学版), 2023, 57(3): 530-541.
[2] 季廷炜,莫邵昌,谢芳芳,张鑫帅,蒋逸阳,郑耀. 基于高斯过程回归的机翼/短舱一体化气动优化[J]. 浙江大学学报(工学版), 2023, 57(3): 632-642.
[3] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[4] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[5] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[6] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[7] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[8] 王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
[9] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[10] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.
[11] 任嘉豪,王海鸥,邢江宽,罗坤,樊建人. 湍流火焰切向应变率的低维近似模型[J]. 浙江大学学报(工学版), 2021, 55(6): 1128-1134.
[12] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[13] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[14] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[15] 张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.