Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1427-1435    DOI: 10.3785/j.issn.1008-973X.2024.07.012
交通工程、土木工程     
基于TJS工法的盾构隧道运营变形控制
周思剑1,2(),张迪3,周建1,2,*(),李瑛4,龚晓南1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 城市地下空间开发工程技术研究中心,浙江 杭州 310058
3. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063
4. 浙江省建筑设计研究院,浙江 杭州 310006
Deformation control of shield tunnel operation based on tunnel jet system method
Sijian ZHOU1,2(),Di ZHANG3,Jian ZHOU1,2,*(),Ying LI4,Xiaonan GONG1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development, Zhejiang University, Hangzhou 310058, China
3. China Railway Siyuan Survey and Design Group Limited Company, Wuhan 430063, China
4. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China
 全文: PDF(1953 KB)   HTML
摘要:

开展隧道洞内全方位微扰动高压喷射注浆(TJS)工法对运营隧道变形控制的研究. 基于典型区间运营隧道实测数据,采用Plaxis 3D有限元数值模拟软件分析TJS工法横断面布置中桩长、打设角度、桩径对隧道加固效果的影响,通过在隧道底部打设局部垫层的方法优化TJS工法. 结果表明,桩长越长、角度越接近40°、桩径越大,对隧道沉降的控制效果越明显. TJS工法加固后的隧道地表沉降减少16.38 mm,水平收敛变形为未加固时的42.87%. 局部垫层能够显著提升TJS桩的加固效果,“两侧短中间长”的布置能够兼顾加固效果和降低施工成本.

关键词: TJS工法洞内加固盾构隧道运营变形控制数值模拟    
Abstract:

A study was carried out on the deformation control of operational tunnels using the tunnel jet system (TJS) method. Based on measured data from a typical operating tunnel section, a finite element numerical simulation software Plaxis 3D was used to analyze the influence of pile length, pile angle and pile diameter on the tunnel reinforcement effect in the cross-section arrangement of the TJS method. A method for optimizing the TJS method was proposed by placing a partial cushion layer at the bottom of the tunnel. Results showed that a longer pile length, an angle closer to 40 degrees, and a larger pile diameter led to a more pronounced ability to control tunnel settlement. The ground settlement of the tunnel reinforced by the TJS method was reduced by 16.38 mm, and the horizontal convergence deformation was 42.87% of that of the unreinforced tunnel. A partial cushion layer greatly enhanced the reinforcement effect of TJS piles, the layout of “short on both sides and long in the middle” reduced construction costs while taking into account the reinforcement effect.

Key words: tunnel jet system method    in-tunnel reinforcement    shield tunnel    deformation control of operation period    numerical simulation
收稿日期: 2023-06-16 出版日期: 2024-07-01
CLC:  TU 74  
基金资助: 国家自然科学基金资助项目(51778575);铁四院横向课题资助项目(2022K119-W01).
通讯作者: 周建     E-mail: 22112172@zju.edu.cn;zjelim@zju.edu.cn
作者简介: 周思剑(1999—),男,硕士生,从事隧道工程研究工作. orcid.org/0009-0006-8801-386X. E-mail:22112172@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周思剑
张迪
周建
李瑛
龚晓南

引用本文:

周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制[J]. 浙江大学学报(工学版), 2024, 58(7): 1427-1435.

Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.012        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1427

图 1  TJS工法
结构模型d/mγ/(kN·m?3E/GPa
管片(C50)线弹性0.3524.024×103(0.7×34.5×103)
道床(C30)线弹性0.6518.020×103
TJS线弹性22.07×103
表 1  模型结构计算参数
土层编号土层名称γ/(kN·m?3eE/kPavc/kPaφ/(°)k/(m·s?1
粉质黏土18.70.9723950.3213.014.83.27×10?9
淤泥质粉质黏土18.01.1320320.347.018.72.66×10?9
淤泥质黏土17.01.4412930.3610.09.81.82×10?9
1粉质黏土18.31.0127100.3310.015.93.00×10?9
2夹薄砂层粉质黏土18.30.9833180.2910.019.12.47×10?7
粉质黏土19.90.7042160.3012.830.03.00×10?9
粉砂夹黏土20.10.6465600.3026.36.02.00×10?7
表 2  土体计算参数
图 2  典型工况的土层剖面图
图 3  典型工况的网格划分图
图 4  典型工况的模拟数据验证
工况l/mθ/(°)r/mm
1440800
2840800
31240800
41640800
52040800
61220800
71260800
81280800
91240400
101240600
1112401000
1212401200
表 3  桩体布置分组
图 5  桩长对加固效果的影响
图 6  打设角度对加固效果的影响
图 7  桩径对加固效果的影响
图 8  地表沉降加固效果
图 9  衬砌水平变形云图
图 10  局部垫层优化TJS工法
图 11  优化TJS工法加固效果
图 12  优化TJS工法衬砌应力云图
组合形式组别$ l_{\mathrm{c}} $/m$ l_{\mathrm{i}} $/mL/m
长短桩18620
28416
38212
46822
等长桩58824
67721
76618
表 4  TJS长短桩组合分组
图 13  优化TJS工法组合的沉降对比
1 SHIRLAW J N Observed and calculated pore pressures and deformations induced by an earth balance shield: discussion[J]. Canadian Geotechnical Journal, 1995, 32: 181- 189
doi: 10.1139/t95-017
2 O’REILLY M P, MAIR R J, ALDERMAN G H. Long-term settlements over tunnels: an eleven-year study at Grimsby [C]// Proceedings of Tunnelling 1991: 6th International Symposium . London: Elsevier, 1991: 55−64.
3 张校甫, 周冠南, 苏华友 复杂地质浅埋隧道袖阀管地表注浆加固技术[J]. 施工技术, 2017, 46 (Suppl.2): 1049- 1052
ZHANG Xiaofu, ZHOU Guannan, SU Huayou Surface grouting reinforcement technique of soletanche in complicated geological shallow tunnel[J]. Construction Technology, 2017, 46 (Suppl.2): 1049- 1052
4 吕昌怀, 刘燕, 张亮亮, 等 明挖隧道与盾构隧道下穿铁路桥变形影响及隔离桩效果[J]. 铁道建筑, 2022, 62 (11): 118- 121
LYU Changhuai, LIU Yan, ZHANG Liangliang, et al Deformation influence and isolation pile effect of existing railway bridge crossed by open-cut tunnel and shield tunnel[J]. Railway Engineering, 2022, 62 (11): 118- 121
doi: 10.3969/j.issn.1003-1995.2022.11.25
5 陈仁朋, 张品, 刘湛, 等 MJS水平桩加固在盾构下穿既有隧道中应用研究[J]. 湖南大学学报: 自然科学版, 2018, 45 (7): 103- 110
CHEN Renpeng, ZHANG Pin, LIU Zhan, et al Application study of MJS horizontal column reinforcement in shield tunneling[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (7): 103- 110
6 VOLKMANN G, SCHUBERT W. Geotechnical model for pipe roof supports in tunneling [C]// Underground Space: the 4th Dimension of Metropolises . [S.l.]: Taylor and Francis Group, 2007: 755−760.
7 岳洪武, 苗苗 浅埋暗挖软岩隧道管棚预注浆加固效果分析[J]. 现代隧道技术, 2021, 58 (2): 111- 117
YUE Hongwu, MIAO Miao Analysis on pre-grouting reinforcement effect of pipe roofs for the shallow-buried mined tunnel in soft rocks[J]. Modern Tunnelling Technology, 2021, 58 (2): 111- 117
8 单生彪. 合肥地铁盾构隧道近接高架桥施工影响与控制研究[D]. 合肥: 合肥工业大学, 2017.
SHAN Shengbiao. Study on the influence of Hefei metro tunneling adjacent to viaduct and its construction controls [D]. Hefei: Hefei University of Technology, 2017.
9 孙雅珍, 于阳, 王金昌, 等. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究[J]. 岩土工程学报, 2022, 44(2): 343−351.
SUN Yazhen, YU Yang, WANG Jinchang, et al. Mechanical properties of linings of shield tunnel strengthened by steel plates considering interface effects [J]. Chinese Journal of Geotechnical Engineering , 2022, 44(2): 343−351.
10 柳献, 张乐乐, 李刚, 等 复合腔体加固盾构隧道结构承载能力的试验研究[J]. 城市轨道交通研究, 2015, (7): 52- 57
LIU Xian, ZHANG Lele, LI Gang, et al Experimental study on the ultimate bearing capacity of shield tunnel composite cavity reinforcement[J]. Urban Mass Transit, 2015, (7): 52- 57
11 柳献, 张晨光, 张衍, 等 复合腔体加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2015, 12 (2): 376- 383
LIU Xian, ZHANG Chenguang, ZHANG Yan, et al Experimental study on the longitudinal joint of shield tunnels reinforced with composite cavity[J]. Journal of Railway Science and Engineering, 2015, 12 (2): 376- 383
doi: 10.3969/j.issn.1672-7029.2015.02.024
12 刘梓圣, 张冬梅 软土盾构隧道芳纶布加固机理和效果研究[J]. 现代隧道技术, 2014, 51 (5): 155- 160
LIU Zisheng, ZHANG Dongmei The mechanism and effects of AFRP reinforcement for a shield tunnel in soft soil[J]. Modern Tunnelling Technology, 2014, 51 (5): 155- 160
13 刘学增, 周若阳, 游贵良, 等 VI级围岩公路隧道衬砌粘贴钢板和粘贴碳纤维布加固方法对比试验研究[J]. 科学技术与工程, 2017, 17 (34): 130- 135
LIU Xuezeng, ZHOU Ruoyang, YOU Guiliang, et al Comparative experimental study on reinforcement of highway tunnel lining by bonding steel plate and bonding carbon-fiber-reinforced plastics under VI grade surrounding rock[J]. Science Technology and Engineering, 2017, 17 (34): 130- 135
doi: 10.3969/j.issn.1671-1815.2017.34.021
14 柳献, 张晨光, 张宸, 等 FRP加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2016, 13 (2): 316- 324
LIU Xian, ZHANG Chenguang, ZHANG Chen, et al Experimental study on the longitudinal joint in shield tunnel reinforced with FRP material[J]. Journal of Railway Science and Engineering, 2016, 13 (2): 316- 324
doi: 10.3969/j.issn.1672-7029.2016.02.018
15 王文龙. 盾构隧道近距离上穿施工对既有隧道扰动分析及加固技术研究[D]. 徐州: 中国矿业大学, 2022.
WANG Wenlong. Study on disturbance analysis and reinforcement technology of existing tunnel by shield tunnel close overpass construction [D]. Xuzhou: China University of Mining and Technology, 2022.
16 赵帅, 张东明, 邵华, 等 盾构隧道微扰动注浆对土体强度和衬砌横向收敛的影响[J]. 同济大学学报: 自然科学版, 2022, 50 (8): 1145- 1153
ZHAO Shuai, ZHANG Dongming, SHAO Hua, et al Influence of perturbation grouting of shield tunnel on soil strength and transverse convergence of tunnel linings[J]. Journal of Tongji University: Natural Science, 2022, 50 (8): 1145- 1153
17 张冬梅, 邹伟彪, 闫静雅 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36 (12): 2203- 2212
ZHANG Dongmei, ZOU Weibiao, YAN Jingya Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (12): 2203- 2212
doi: 10.11779/CJGE201412007
18 鞠丽艳, 倪佳 关于盾构法隧道注浆防水及加固技术的应用分析[J]. 中国建筑防水, 2015, (24): 21- 24
JU Liyan, NI Jia Application analysis on waterproofing and reinforcement technology for shield tunnel grouting[J]. China Building Waterproofing, 2015, (24): 21- 24
doi: 10.3969/j.issn.1007-497X.2015.24.007
19 卓越, 李治国, 高广义 隧道注浆技术的发展现状与展望[J]. 隧道建设(中英文), 2021, 41 (11): 1953- 1963
ZHUO Yue, LI Zhiguo, GAO Guangyi Development status and prospect of tunnel grouting technology[J]. Tunnel Construction, 2021, 41 (11): 1953- 1963
20 刘兴旺, 李瑛, 龚晓南, 等 新型地基加固IMS工法施工对土体扰动的试验研究[J]. 地基处理, 2019, 1 (2): 54- 58
LIU Xingwang, LI Ying, GONG Xiaonan, et al Experimental study on soil disturbance during construction by innovative mixing system[J]. Chinese Journal of Ground Improvement, 2019, 1 (2): 54- 58
21 LEE K M, JI H W, SHEN C K, et al Ground response to the construction of Shanghai Metro Tunnel-Line 2[J]. Soils and Foundations, 1999, 39 (3): 113- 134
doi: 10.3208/sandf.39.3_113
22 SHEN S, WU H, CUI Y, et al Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309- 323
doi: 10.1016/j.tust.2013.10.013
23 黄宏伟, 李庆桐 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36 (12): 2861- 2871
HUANG Hongwei, LI Qingtong Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (12): 2861- 2871
24 陶冶. 车辆荷载作用下路基沉降计算方法研究[D]. 杭州: 浙江大学, 2012.
TAO Ye. Study on subgrade settlement calculation method under vehicle loads [D]. Hangzhou: Zhejiang University, 2012.
25 FUJIKAWA K, MIURA N, BEPPU I Field investigation on the settlement of low embankment due to traffic load and its prediction[J]. Soils and Foundations, 1996, 36 (4): 147- 153
doi: 10.3208/sandf.36.4_147
26 徐长节, 孙凤明, 林刚 杭州庆春路过江隧道运营期沉降研究[J]. 中南大学学报: 自然科学版, 2014, 45 (9): 3219- 3226
XU Changjie, SUN Fengming, LIN Gang Longitudinal settlement analysis of Hangzhou Qingchun cross-river tunnel during operational periods[J]. Journal of Central South University: Science and Technology, 2014, 45 (9): 3219- 3226
27 中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2013.
28 郭金玲. 粉喷桩加固软土地基对周围结构及地基的影响分析[D]. 西安: 西安理工大学, 2018.
GUO Jinling. Analysis on the effect of DJM piles on the surrounding structure and foundation of soft soil foundation [D]. Xi’an: Xi’an University of Technology, 2018.
[1] 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法[J]. 浙江大学学报(工学版), 2024, 58(3): 557-569.
[2] 刘俊城,谭勇,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报(工学版), 2023, 57(3): 530-541.
[3] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[4] 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析[J]. 浙江大学学报(工学版), 2023, 57(12): 2476-2488.
[5] 王意存,邵长孝,金台,邢江宽,罗坤,樊建人. 基于多门控混合专家网络的燃烧热化学流形表征[J]. 浙江大学学报(工学版), 2023, 57(12): 2401-2411.
[6] 季廷炜,查旭,谢芳芳,吴雨思,张鑫帅,蒋逸阳,杜昌平,郑耀. 基于高斯过程回归的空天飞行器多精度气动建模方法[J]. 浙江大学学报(工学版), 2023, 57(11): 2314-2324.
[7] 吕国鹏,蒋楠,周传波,李海波,姚颖康,张旭. 地表爆炸作用下钢筋混凝土管道裂缝扩展机制[J]. 浙江大学学报(工学版), 2022, 56(9): 1704-1713.
[8] 石均,邱颖宁,周毅. 时间演化分形流场的直接数值模拟[J]. 浙江大学学报(工学版), 2022, 56(8): 1606-1621.
[9] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[10] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639.
[11] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[12] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[13] 王冬姣,陈昌润,刘鲲,邱守强. 多自由度波浪能装置参数激励运动研究[J]. 浙江大学学报(工学版), 2022, 56(12): 2496-2506.
[14] 王意存,邢江宽,罗坤,王海鸥,樊建人. 基于物理信息神经网络的燃烧化学微分方程求解[J]. 浙江大学学报(工学版), 2022, 56(10): 2084-2092.
[15] 张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.