浙江大学学报(工学版)  2023, Vol. 57 Issue (2): 340-352    DOI: 10.3785/j.issn.1008-973X.2023.02.014
 土木与交通工程

1. 北京交通大学 城市地下工程教育部重点实验室，北京 100044
2. 北京交通大学 土木建筑工程学院，北京 100044
3. 郑州财经学院 土木工程学院，河南 郑州 450000
Longitudinal stress and deformation characteristics of shield tunnel crossing active fault
Han-yuan LI1,2(),Xing-gao LI1,2,*(),Yang LIU3,Yi YANG1,2,Ming-zhe MA1,2
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
3. School of Civil Engineering, Zhengzhou College of Finance and Economics, Zhengzhou 450000, China
 全文: PDF(3339 KB)   HTML

Abstract:

In order to study the mechanical response characteristics of shield tunnels under fault dislocation, an analytical model of the longitudinal mechanical response of shield tunnels under cross-active fault conditions was proposed by introducing the Vlasov two-parameter foundation model and considering the influence of horizontal friction. Taking the normal fault dislocation condition as a case study, the rationality of the analytical model was verified by model test and numerical simulation, and the main factors affecting the longitudinal mechanical response of the structure were further discussed. A three-dimensional numerical model considering the plastic deformation of the annular joints was established to analyze the influence of plastic deformation of the annular joint on the longitudinal force and deformation of the tunnel structure. Results show that the longitudinal mechanical response characteristics of the tunnel calculated by the analytical model are consistent with those obtained by the model test and numerical calculation. When the vertical shear stiffness of the foundation is not considered, the longitudinal bending moment of the tunnel calculated is too large. Compared with the shallow tunnel in soil conditions, the deep-buried tunnel in rock stratum has a more obvious restriction on tunnel deformation and leads to the excessive longitudinal internal force of the structure. The vertical distance between the tunnel and the fault, the width of the fault fracture zone, and the effective rate of the longitudinal bending stiffness of the structure all significantly influence the maximum longitudinal internal force of the tunnel. When considering the plastic deformation of the annular joint, the obvious plastic deformation of the shield tunnel annular joint has occurred under 20 cm fault dislocation, which severely affects the operation safety of the shield tunnel.

Key words: fault dislocation    shield tunnel    theoretic analysis    stress characteristics    longitudinal deformation

 CLC: U 459.3

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 李瀚源 李兴高 刘杨 杨益 马明哲

#### 引用本文:

Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.

#### 链接本文:

 图 1  跨断层盾构隧道纵向受力模型 图 2  跨断层盾构隧道解析模型 图 3  梁微元体受力分析 图 4  跨断层盾构隧道相似模型试验[17] 图 5  监测传感器布置示意图 图 6  跨断层盾构隧道数值计算模型 图 7  浅埋土质地层工况下隧道纵向内力 图 8  浅埋土质地层工况结构变形 图 9  深埋岩质地层隧道纵向内力 图 10  破碎带围岩条件与隧道结构转角的关系 图 11  不同隧道底部与断层竖向距离下的隧道纵向弯矩 图 12  隧道最大弯矩随断层与隧道垂直距离变化的曲线 图 13  不同断层宽度下的隧道纵向弯矩 图 14  隧道纵向最大弯矩与断层宽度关系曲线 图 15  隧道纵向最大弯矩与纵向刚度有效率关系曲线 图 16  隧道最大纵向弯矩与弹性极限弯矩的关系 图 17  盾构隧道三维数值模型 图 18  环缝接头刚度确定方法 图 19  盾构隧道结构弯矩与转角关系曲线 图 20  数值模型边界条件及荷载加载方式 图 21  隧道最大纵向弯矩与断层错动量的关系 图 22  盾构隧道环缝接头张开量 图 23  环缝接头张开量与断层错动量的关系
 19 张文杰, 徐旭, 李向红, 等 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学报, 2009, 28 (Suppl.2): 3938- 3944 ZHANG Wen-jie, XU Xu, LI Xiang-hong, et al Research on generalized longitudinal equivalent continuous model of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (Suppl.2): 3938- 3944 doi: 10.3321/j.issn:1000-6915.2009.z2.094 20 田敬学, 张庆贺 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001, (3): 35- 37 TIAN Jing-xue, ZHANG Qing-he Calculation of longitudinal rigidity of shield tunnels[J]. China Municipal Engineering, 2001, (3): 35- 37 doi: 10.3969/j.issn.1004-4655.2001.03.012 21 CHEN R P, CHEN S, WU H N, et al Investigation on deformation behavior and failure mechanism of a segmental ring in shield tunnels based on elaborate numerical simulation[J]. Engineering Failure Analysis, 2020, 117: 104960 doi: 10.1016/j.engfailanal.2020.104960 22 梁荣柱, 宗梦繁, 康成, 等 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报: 工学版, 2018, 52 (3): 420- 430 1 LIU X Z, LI X F, SANG Y L, et al Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 417- 425 doi: 10.1016/j.tust.2015.05.010 2 孙飞, 张志强, 易志伟 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学, 2019, 47 (8): 3037- 3044SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics, 2019, 47 (8): 3037- 3044 3 安韶, 陶连金, 边金, 等 逆断层错动作用下地铁隧道结构损伤分析[J]. 湖南大学学报: 自然科学版, 2020, 47 (7): 147- 156AN Shao, TAO Lian-jin, BIAN Jin, et al Damage analysis on subway tunnel structure under effect of reverse fault dislocation[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (7): 147- 156 4 郭翔宇, 耿萍, 丁梯, 等 逆断层黏滑作用下隧道力学行为研究[J]. 振动与冲击, 2021, 40 (17): 249- 258 22 LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, et al Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 420- 430 4 GUO Xiang-yu, GENG Ping, DING Ti, et al Mechanical behavior of tunnel under stick-slip action of reverse fault[J]. Journal of Vibration and Shock, 2021, 40 (17): 249- 258 5 KIANI M, AKHLAGHI T, GHALANDARZADEH A Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults[J]. Tunnelling and Underground Space Technology, 2016, 51: 108- 119 doi: 10.1016/j.tust.2015.10.005 6 胡志平, 彭建兵, 王启耀, 等 盾构隧道60°斜穿地裂缝的变形破坏机制试验研究[J]. 岩石力学与工程学报, 2010, 29 (1): 176- 183HU Zhi-ping, PENG Jian-bing, WANG Qi-yao, et al Modeling test research on failure mechanism of shieldtunnel crossing ground fissure with 60°[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (1): 176- 183 7 ZAHERI M, RANJBARNIA A, DIAS D, et al Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23: 100333 doi: 10.1016/j.trgeo.2020.100333 8 王滨, 李昕, 周晶 走滑断层作用下埋地钢质管道反应的改进解析方法[J]. 工程力学, 2011, 28 (12): 51- 58WANG Bin, LI Xin, ZHOU Jing An improved analytical method of buried steel pipeline response under strike-slip fault movement[J]. Engineering Mechanics, 2011, 28 (12): 51- 58 9 刘国钊, 乔亚飞, 何满朝, 等 活动性断裂带错动下的隧道纵向响应解析解[J]. 岩土力学, 2020, 41 (3): 923- 932LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, et al An analytical solution of longitudinal response of tunnels under the dislocation of active fault[J]. Rock and Soil Mechanics, 2020, 41 (3): 923- 932 10 耿萍, 陈枰良, 陈昌健, 等 考虑接触非线性的盾构隧道纵向分析模型及其应用[J]. 同济大学学报: 自然科学版, 2021, 49 (6): 759- 769GENG Ping, CHEN Ping-liang, CHEN Chang-jian, et al Longitudinal analysis model of shield tunnel considering contact nonlinearity and its application[J]. Journal of Tongji University: Natural Science, 2021, 49 (6): 759- 769 11 梁荣柱, 宗梦繁, 康成, 等 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报:工学版, 2018, 52 (3): 420- 430LIANG Rong-zhu, ZONG Meng-fan, KANG Cheng, et al Longitudinal impacts of existing shield tunnel due to down-crossing tunnelling considering shield tunnel shearing effect[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 420- 430 12 VLASOVV Z, LEONTEVU N. Beams, plates and shells on elastic foundations [M]// Israel program for scientific translations. Jerusalem: [s.n.], 1966: 229−236. 13 British Standards Institution. Code of practice for temporary works procedures and the permissible stress design of false work: BS5975-2008[S]. London: British Standards Institution, 2008. 14 黄栩, 黄宏伟, 张冬梅 开挖卸荷引起下卧已建盾构隧道的纵向变形研究[J]. 岩土工程学报, 2012, 34 (7): 1241- 1249HUANG Xu, HUANG Hong-wei, ZHANG Dong-mei Longitudinal deflection of existing shield tunnels due to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (7): 1241- 1249 15 SHIBA Y, KAWASHIMA K, OBINATA N, et al An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988, 398: 319- 327 16 WU H N, SHEN S L, LIAO S M, et al Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317- 323 doi: 10.1016/j.tust.2015.08.001 17 李瀚源, 李兴高, 马明哲, 等 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报: 工学版, 2022, 56 (4): 631- 639LI Han-yuan, LI Xing-gao, MA Ming-zhe, et al Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 631- 639 18 张景, 何川, 耿萍, 等 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36 (1): 68- 77ZHANG Jing, HE Chuan, GENG Ping, et al Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (1): 68- 77
 [1] 李瀚源,李兴高,马明哲,刘浩,杨益. 隐伏断层错动对盾构隧道影响的模型试验研究[J]. 浙江大学学报(工学版), 2022, 56(4): 631-639. [2] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337. [3] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125. [4] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366. [5] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(7): 1268-1275. [6] 李忠超, 陈仁朋, 孟凡衍, 叶俊能. 软黏土中盾构掘进地层变形与掘进参数关系[J]. 浙江大学学报(工学版), 2015, 49(4): 2-3. [7] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074. [8] 刘维, 张翔杰, 唐晓武, 朱季, 陈仁朋. 饱和沙土中土压盾构开挖面极限支护力[J]. J4, 2012, 46(4): 665-671.