浙江大学学报(工学版)  2018, Vol. 52 Issue (2): 358-366    DOI: 10.3785/j.issn.1008-973X.2018.02.019
 土木与交通工程

1. 广州市市政工程设计研究总院, 广东 广州 510060;
2. 华南理工大学 土木与交通学院, 广东 广州 510641
Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining
YANG Chun-shan1, WEI Li-xin1, MO Hai-hong2, HE Ze-gan1
1. Guangzhou Municipal Engineering Design and Research Institute, Guangzhou 510060, China;
2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510641, China
 全文: PDF(6629 KB)   HTML

Abstract:

The transverse rigidity ratio considering staggered installation effect, the differential deformation coefficient and joint rigidity correction coefficients were proposed aioring at the problem that the calculation of longitudinal equivalent rigidity has not considered differential deformation, longitudinal joint characteristics and enhancement caused by staggered installation. Then the calculation formula of longitudinal equivalent rigidity of shield tunnel was deduced combined with numerical method in order to conduct example analysis. The sensitivity of longitudinal rigidity to correction parameters was explored. Results show that the horizontal deformation of lining is 15% smaller than vertical deformation under the transverse action, so it is defective to assume the same deformation in two directions of segment ring. The difference of segment opening is 17.6% when calculation uses actual joint of segment rings or equivalent homogeneous bolt under the same load, and the indispensable error appears during the longitudinal bending calculation when equivalent homogeneous bolt represent the actual joints of shield tunnel. The transverse rigidity increases by 17.5% caused by staggered installation, which causes obvious influence on longitudinal rigidity. Equivalent rigidity difference is 14.3% when calculation considers differential deformation, joints characteristics and transverse rigidity or not, and the influence of rigidity difference on longitudinal structure characteristics is significant. The longitudinal equivalent rigidity linearly decreases with the increase of the differential deformation, and increases with the increase of the joint rigidity correction and transverse rigidity ratio in a linear relation.

 CLC: U45

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 358-366.

#### 链接本文:

 [1] MURAKAMI, KOIZUMI A. Study on load bearing eapacity and mechanics of shield segment ring[J]. Proc for the Japan Society for Civil Engineering, 1978, 272(4):103-115. [2] YUKIS S K N. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Proceedings of the Japan Society of Civil Engineering, 1988:385-394. [3] 田敬学, 张庆贺. 盾构法隧道的纵向刚度计算方法[J]. 中国市政工程, 2001, (3):37-39. TIAN Jing-xue, ZHANG Qing-he. Calculation of longitudinal rigidity of shield tunnels[J]. China Municipal Eng-Ineering, 2001, (3):37-39. [4] 叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 12(3):1870-1876. YE Fei, HE Chuan, ZHU He-hua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transiverse characteristics[J]. Chinese Journal of Geote-chnical Engineering, 2011, 12(3):1870-1876. [5] 张文杰, 徐旭, 李向红, 等. 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学, 2009, 28(增2):3938-3944. ZHANG Wen-jie, XU Xu, LI Xiang-hong, et al. Research on generalized longitudinal equivalent continous model of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Supp2):3938-3944. [6] 李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4):662-670. LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):662-670. [7] 廖少明, 侯学渊, 彭乐芳. 隧道纵向剪切传递效应及其一维解析[J]. 岩石力学与工程学报, 2006, 24(7):1110-1116. LIAO Shao-ming, HOU Xue-yuan, PENG Le-fang. Longitudinal shear transfer of tunnel and its 1d analytical solution[J]. Chinese Journal of Rock Mechanics and Eng ineering, 2006, 24(7):1110-1116. [8] 黄宏伟, 徐凌, 严佳梁, 等. 盾构隧道横向刚度有效率研究[J]. 岩土工程学报, 2006, 28(1):11-18. HUANG Hongwei, XU Ling, YAN Jialiang, et al. Study on transverse effective rigidity ratio of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1):11-18. [9] 叶飞, 杨鹏博, 毛家骅, 等. 基于模型试验的盾构隧道纵向刚度分析[J]. 岩土工程学报, 2015, 37(1):83-90. YE Fei, YANG Peng-bo, MAO Jia-hua, et al. Longitudinal rigidity of shield tunnels based on model tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1):83-90. [10] LEE K M, Y H X, GE X W, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(4):365-390. [11] LEE K M, GE X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering, 2001, 38:461-483. [12] 彭益成, 丁文其, 闫治国, 等. 修正惯用法中弯曲刚度有效率的影响因素分析及计算方法[J]. 岩土工程学报, 2013, 35(增1):495-500. PENG Yi-cheng, DING Wen-qing, YAN Zhi-guo, et al. Analysis and calculation method of effective bending rigidity ratio in modified routine method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Supp1):495-500. [13] 杨春山, 莫海鸿, 陈俊生, 等. 盾构隧道先隧后井施工法对管片张开量的影响研究[J].岩石力学与工程学报, 2014, 33(增1):2870-2877. YANG Chun-shan, Mo Hai-hong, Chen Jun-sheng, et al. Influence of shield tunneling with tunnels followed by well excavation on segment opening[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(supp1):2870-2877. [14] YANG Chun-shan,MO Hai-hong, CHEN Jun-sheng, et al. Numerical analysis of influence caused by lining cracks on dynamic response of shield tunnel during metro operation[J]. Journal of information and computational science, 2014, 11(11):3835-3846. [15] YANG Chun-shan, MO Hai-hong, CHEN Jun-sheng, et al. Numerical study on material optimization of the composite lining of shield tunneling[J]. Electronic Journal of Geotechnical Engineering, 2013, 18R:3813-3824. [16] 莫海鸿, 杨春山, 陈俊生, 等. 盾构隧道先隧道后井施工中工作井支护结构优化[J]. 中南大学学报:自然科学版, 2016, 47(4):1346-1352. MO Hai-hong, YANG Chun-shan, CHEN Jun-sheng, et al. Supporting optimization of working well in shield construction with tunnel followed by well excavation[J]. Journal of Central South University:Science and Technology, 2016, 47(4):1346-1352. [17] 钟小春, 张金荣, 秦建设, 等. 盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J]. 岩土力学, 2011, 32(1):132-136. ZHONG Xiao-chun, ZHANG Jin-rong, QIN Jian-she, et al. Simplified calculation model for longitudinal equivalent bending stiffness of shield tunnel and its influence factors' analysis[J]. Rock and Soil Mechanics, 2011, 32(1):132-136.
 [1] 吴昌胜, 朱志铎. 不同隧道施工方法引起地层损失率的统计分析[J]. 浙江大学学报(工学版), 2019, 53(1): 19-30. [2] 丁智, 王凡勇, 魏新江. 软土双线盾构施工地表变形实测分析与预测[J]. 浙江大学学报(工学版), 2019, 53(1): 61-68. [3] 李林毅, 阳军生, 张峥, 麻彦娜, 张聪, 包德勇. 深埋式中心水沟排水隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2050-2057. [4] 丁智, 张霄, 周联英, 陈自海. 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报(工学版), 2018, 52(10): 1943-1953. [5] 罗华, 陈祖煜, 龚国芳, 赵宇, 荆留杰, 王超. 基于现场数据的TBM掘进速率研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1566-1574. [6] 潘以恒, 罗其奇, 周斌, 陈建平. 半无限平面含注浆圈深埋隧道渗流场解析研究[J]. 浙江大学学报(工学版), 2018, 52(6): 1114-1122. [7] 刘新荣, 刘俊, 黄伦海, 王子娟, 陈红军, 冯艳. 黄土连拱隧道开挖的模型试验与压力拱分析[J]. 浙江大学学报(工学版), 2018, 52(6): 1140-1149. [8] 林赉贶, 夏毅敏, 贾连辉, 贺飞, 杨妹, 杨凯. 安装参数与掘进参数对滚刀破岩阻力的影响[J]. 浙江大学学报(工学版), 2018, 52(6): 1209-1215. [9] 张家奇, 李术才, 张霄, 张庆松, 李鹏, 于海洋. 土石分层介质注浆扩散的试验研究[J]. 浙江大学学报(工学版), 2018, 52(5): 914-924. [10] 张子新, 孙杰, 朱雁飞, 黄昕, 袁玮皓. 深埋排蓄水隧道接缝密封垫防水性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(3): 431-439. [11] 张欣, 张天航, 黄志义, 张驰, 康诚, 吴珂. 分叉隧道分流局部损失特性及流动特征[J]. 浙江大学学报(工学版), 2018, 52(3): 440-445. [12] 梁荣柱, 宗梦繁, 康成, 吴文兵, 方宇翔, 夏唐代, 程康. 考虑隧道剪切效应的隧道下穿对既有盾构隧道的纵向影响[J]. 浙江大学学报(工学版), 2018, 52(3): 420-430. [13] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486. [14] 夏毅敏, 钱聪, 李正光, 梅勇兵. 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报(工学版), 2018, 52(2): 233-239. [15] 于洋, 徐长节, 朱陈, 徐倩. 爆孕育过程的微震源事件空间分形行为[J]. 浙江大学学报(工学版), 2017, 51(11): 2175-2181.