Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1072-1082    DOI: 10.3785/j.issn.1008-973X.2025.05.020
土木工程、交通工程     
分隔型基坑施工对邻近地层及隧道位移的影响
周鼎文1,2(),韩磊3,应宏伟1,4,*(),朱成伟1,李慧慧5
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江海港海洋工程建设有限公司,浙江 宁波 315899
3. 中国建筑第八工程局有限公司,上海 200112
4. 河海大学 岩土力学与堤坝工程教育部重点实验室,江苏 南京 210098
5. 杭州市勘测设计研究院,浙江 杭州 310013
Effect of segregated pit construction on displacement of adjacent strata and tunnel
Dingwen ZHOU1,2(),Lei HAN3,Hongwei YING1,4,*(),Chengwei ZHU1,Huihui LI5
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Zhejiang Seaport Marine Engineering Construction Limited Company, Ningbo 315899, China
3. China Construction Eighth Engineering Division Limited Company, Shanghai 200112, China
4. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
5. Hangzhou Investigation and Design Institute, Hangzhou 310013, China
 全文: PDF(1813 KB)   HTML
摘要:

为了研究远近分坑的施工顺序、分隔墙位置及其他因素对分坑施工引起软土深大基坑及周围设施变形的影响,基于杭州某邻近运营地铁盾构隧道的深基坑案例,建立分隔型基坑的有限元数值模型. 结合实测数据,验证各土层小应变刚度硬化(HSS)模型参数的合理性. 结合在实际案例基础上简化的基坑算例,研究“平台”式分隔型基坑的分坑施工顺序对坑外地层及既有隧道位移的影响. 结果表明,杭州软土地层分隔型基坑开挖引起的坑外地层和隧道位移与分坑施工顺序、分隔墙位置、软黏土厚度及隧道与基坑的相对位置等因素相关. 当采用先近后远施工时,远坑宽度越大,近坑围护墙变形、地表沉降和隧道位移越大. 对于先远后近施工,则反之,此时远坑与近坑宽度之比取3.0~4.0、近坑宽度取15 ~20 m的分坑方案对近坑围护墙和邻近隧道变形的控制效果最佳. 随着软黏土层厚度的增大,先近后远和先远后近2种分坑施工顺序引起的近坑围护墙变形、地表沉降和隧道位移均明显增大. 提出分坑施工顺序对坑外地层位移的影响分区的概念,影响分区的分界线可以简化取为与坑壁夹角近似为45°的直线,随着远坑宽度和软黏土层厚度的增大,先近后远施工引起的地层位移小于先远后近施工的影响分区的范围逐渐减小. 通过参数分析,提出与分隔墙位置和软土层厚度相关的影响分区分界线拟合公式.

关键词: 分隔型基坑既有隧道分坑施工变形位移影响分区    
Abstract:

A finite element numerical model of the segregated foundation pit was established based on the case of a deep foundation pit in Hangzhou adjacent to an operating underground shield tunnel in order to analyze the influence of the construction sequence, the separation wall location and other factors on the deformation of deep and large foundation pits and adjacent facilities caused by the segregated-pit construction. The reasonableness of the parameters of the HSS model was verified by combining with the measured data. The influence of the construction sequence of the "platform" type segregated pit on the displacements of out-of-pit strata and existing adjacent tunnels were analyzed by combining with a simplified model based on the case. Results show that the displacements of strata and tunnels caused by the excavation of the segregated pit in Hangzhou soft soil are related to the construction sequence, the location of the separation wall, the thickness of the soft clay, and the relative position of the tunnel and the pit. The deformation of the close pit retaining wall, the surface settlement and the tunnel displacement will be greater with a wider far sub-pit when the close sub-pit is firstly constructed. An opposite finding is observed if the far sub-pit is firstly excavated, and the optimal control effect on the deformation of the retaining wall and adjacent tunnels is achieved by dividing the ratio of the far sub-pit width to the close one by 3.0 to 4.0 and the width of the close sub-pit by 15 m to 20 m. The deformation of the close pit retaining wall, the surface settlement and the tunnel displacement caused by the two sub-pit construction sequences will increase as the thickness of the soft clay layer increases. The concept of the displacement impact zone resulting from different sub-pit construction sequences was proposed, and the demarcation line of the zone can be simplified to be a straight line with an angle of 45° to the wall of the pit. The range of the displacement impact zone which is defined as the strata displacement caused by the close-first-then-far construction sequence is smaller than that of the far-first-then-close construction sequence gradually decreases with the increase of the width of the far sub-pit and the thickness of the soft clay layer. A parametric analysis was conducted to propose formula for fitting the demarcation line of the impact zones related to the location of the separation wall and the thickness of the soft soil layer.

Key words: segregated pit    existing tunnel    segregated-pit construction    deformation    displacement impact zone
收稿日期: 2024-05-17 出版日期: 2025-04-25
CLC:  TU 753  
基金资助: 国家自然科学基金资助项目(51678523);浙江省建设科研项目(2018K119).
通讯作者: 应宏伟     E-mail: zhoudingwen1998@zju.edu.cn;ice898@zju.edu.cn
作者简介: 周鼎文(1998—),男,硕士,从事地下工程的研究. orcid.org/0009-0005-5784-1307. E-mail:zhoudingwen1998@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周鼎文
韩磊
应宏伟
朱成伟
李慧慧

引用本文:

周鼎文,韩磊,应宏伟,朱成伟,李慧慧. 分隔型基坑施工对邻近地层及隧道位移的影响[J]. 浙江大学学报(工学版), 2025, 59(5): 1072-1082.

Dingwen ZHOU,Lei HAN,Hongwei YING,Chengwei ZHU,Huihui LI. Effect of segregated pit construction on displacement of adjacent strata and tunnel. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1072-1082.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1072

图 1  案例基坑与既有地铁设施的平面关系
图 2  基坑支撑的平面布置图
图 3  案例 A-A典型剖面图
土层ds/mγ/(kN·m?3)c'/kPaφ'/(°)$ E_{50}^{{\mathrm{r e f}}} $/MPa$ E_{\mathrm{oed}}^{{\mathrm{r e f}}} $/MPa$ E_{\mathrm{ur}}^{\text {ref }} $/MPa$ G_{0}^{{\mathrm{r e f}}} $/MPae
①杂填土2.41751023.38200.7
②砂质粉土11.3197.53111.511461600.735
③淤泥质粉质黏土21.617.610223.32.2522.5651.1
⑤粉质黏土9.618.6202665.5503000.83
⑧圆砾25.12214025251004000.35
表 1  土体的物理力学参数
图 4  有限元网格图
步骤施工或模拟工况
1平衡初始应力场
2隧道施工
3围护结构施工(位移清零)
4北区第1层开挖至?1.3 m,设置水平支撑
5北区坑内降水、第2层开挖至?5.8 m,设置水平支撑
6北区坑内降水、第3层开挖至?9.7 m,施工底板
7北区拆换撑、地下结构回筑施工完成
8南区坑内降水、第1层开挖至?4.0 m,设置水平支撑
9南区坑内降水、第2层开挖至?9.0 m,设置水平支撑
10南区坑内降水、第3层开挖至?14.1 m,施工底板
11南区拆换撑、地下结构回筑施工完成
表 2  案例基坑施工模拟的步骤
图 5  围护墙变形的实测与数值模拟对比
图 6  平台式分隔型基坑的剖面
变量变量设置变量个数
施工顺序先近后远、先远后近2
分隔墙位置(B2/B11、2、3、44
软土层厚度(h1/h0、0.33、0.67、14
表 3  平台式分隔型基坑算例的主要变量
图 7  施工顺序对近坑围护墙变形的影响
图 8  单坑施工引起的近坑围护墙变形及墙后土体有效应力变化
图 9  施工顺序对土体水平位移的影响
图 10  施工顺序对土体竖向位移的影响
图 11  隧道考察点的示意图
mm
施工顺序umaxSmax$\Delta {{D}}_{\mathrm{t}}$
上行线下行线上行线下行线上行线下行线
先近后远31.817.3?15.3?6.411.410.8
先远后近27.313.8?12.3?5.510.57.9
表 4  施工顺序对隧道位移的影响
图 12  施工顺序对坑外地层位移的影响分区
图 13  分隔墙位置对近坑围护墙变形的影响
图 14  分隔墙位置对地表沉降的影响
图 15  分隔墙位置与施工顺序对隧道位移的影响
图 16  分隔墙位置对坑外地层位移影响分区的影响
图 17  软土层厚度对近坑围护墙变形的影响
图 18  软土层厚度对地表沉降的影响
图 19  软土层厚度与施工顺序对隧道位移的影响
图 20  软土层厚度对坑外地层位移影响分区的影响
图 21  截距与开挖深度间关联系数的三维拟合曲面图
1 OU C Y, LIAO J T, CHENG W L Building response and ground movements induced by a deep excavation[J]. Géotechnique, 2000, 50 (3): 209- 220
2 程康, 徐日庆, 应宏伟, 等 杭州软黏土地区某30.2 m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报, 2021, 40 (4): 851- 863
CHENG Kang, XU Riqing, YING Hongwei, et al Analysis of excavation properties of a 30.2m deep foundation pit in Hangzhou soft clay area[J]. Journal of Rock Mechanics and Engineering, 2021, 40 (4): 851- 863
3 ZHENG G, YANG X Y, ZHOU H Z, et al A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95: 119- 128
doi: 10.1016/j.compgeo.2017.10.006
4 木林隆, 黄茂松 基坑开挖引起的周边土体三维位移场的简化分析[J]. 岩土工程学报, 2013, 35 (5): 820- 827
MU Linlong, HUANG Maosong Simplified analysis of three-dimensional displacement field of surrounding soil due to pit excavation[J]. Journal of Geotechnical Engineering, 2013, 35 (5): 820- 827
5 ZHANG D M, XIE X C, LI Z L, et al Simplified analysis method for predicting the influence of deep excavation on existing tunnels[J]. Computers and Geotechnics, 2020, 121: 103477
doi: 10.1016/j.compgeo.2020.103477
6 CHEN R P, MENG F Y, LI Z C, et al Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils[J]. Tunnelling and Underground Space Technology, 2016, 58: 224- 235
doi: 10.1016/j.tust.2016.06.002
7 LIANG R Z, XIA T D, HUANG M S, et al Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167- 187
doi: 10.1016/j.compgeo.2016.08.017
8 ZHANG B Q, HUANG W, CHENG F Q, et al Analytical study on the transverse internal forces of shield tunnel segments due to adjacent excavations in soft clays[J]. KSCE Journal of Civil Engineering, 2021, 25 (12): 4842- 4855
doi: 10.1007/s12205-021-1794-y
9 张治国, 张孟喜, 王卫东 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32 (7): 2085- 2092
ZHANG Zhiguo, ZHANG Mengxi, WANG Weidong A two-stage approach to analyze the impact of pit excavation on adjacent metro tunnels[J]. Rock and Soil Mechanics, 2011, 32 (7): 2085- 2092
doi: 10.3969/j.issn.1000-7598.2011.07.028
10 ZHANG J F, CHEN J J, WANG J H, et al Prediction of tunnel displacement induced by adjacent excavation in soft soil[J]. Tunnelling and Underground Space Technology, 2013, 36: 24- 33
doi: 10.1016/j.tust.2013.01.011
11 张玉伟, 谢永利, 翁木生 非对称基坑开挖对下卧地铁隧道影响的离心试验[J]. 岩土力学, 2018, 39 (7): 2555- 2562
ZHANG Yuwei, XIE Yongli, WENG Musheng Centrifugal tests on the effect of asymmetric pit excavation on an undercover metro tunnel[J]. Rock and Soil Mechanics, 2018, 39 (7): 2555- 2562
12 陈仁朋, AL-MADHAGI A, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(增 2): 6-11.
CHEN Renpeng, AL-MADHAGI A, MENG Fanyan. Centrifugal modelling of the effect of pit excavation on side tunnels and the role of diaphragm walls [J]. Journal of Geotechnical Engineering , 2018, 40(Suppl. 2): 6-11.
13 梁发云, 褚峰, 宋著, 等 紧邻地铁枢纽深基坑变形特性离心模型试验研究[J]. 岩土力学, 2012, 33 (3): 657- 664
LIANG Fa yun, CHU Feng, SONG Zhu, et al Centrifugal Modelling of deformation characteristics of deep foundation pit adjacent to metro hubs[J]. Rock and Soil Mechanics, 2012, 33 (3): 657- 664
14 黄沛, 刘国彬, 霍润科 软土地区基坑分区开挖参数分析[J]. 中南大学学报: 自然科学版, 2015, 46 (10): 3859- 3864
HUANG Pei, LIU Guobin, HUO Runke Parameter analysis of foundation pit zoned excavation in soft soil areas[J]. Journal of Central South University: Science and Technology, 2015, 46 (10): 3859- 3864
15 李航, 廖少明, 汤永净, 等 软土地层中分隔型基坑变形特性及应力路径[J]. 同济大学学报: 自然科学版, 2021, 49 (8): 1116- 1127
LI Hang, LIAO Shaoming, TANG Yongjing, et al Deformation characteristics and stress paths of segregated pits in soft ground layers[J]. Journal of Tongji University: Natural Science, 2021, 49 (8): 1116- 1127
16 王卫东, 王浩然, 徐中华 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34 (6): 1766- 1774
WANG Weidong, WANG Haoran, XU Zhonghua Study on the parameters of soil HS-Small model in numerical analysis of foundation pit excavation in Shanghai area[J]. Rock and Soil Mechanics, 2013, 34 (6): 1766- 1774
17 梁发云, 贾亚杰, 丁钰津, 等 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39 (2): 269- 278
LIANG Fayun, JIA Yajie, DING Yujin, et al Experimental study of HSS model parameters for soft soil in Shanghai area[J]. Journal of Geotechnical Engineering, 2017, 39 (2): 269- 278
18 顾晓强, 吴瑞拓, 梁发云, 等 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42 (3): 833- 845
GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al Methods of parameterization and engineering validation of a small-strain hardening model for soils in Shanghai[J]. Rock and Soil Mechanics, 2021, 42 (3): 833- 845
19 陈赟, 罗敏敏, 夏能武, 等. 软土HSS模型参数现有试验成果统计分析[J]. 岩土工程学报, 2021, 43(增2): 197-201.
CHEN Yun, LUO Minmin, XIA Nengwu, et al. Statistical analysis of existing test results for soft soil HSS model parameters [J]. Journal of Geotechnical Engineering , 2021, 43(Suppl. 2): 197-201.
20 王卫东, 徐中华, 王建华 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33 (11): 1659- 1666
WANG Weidong, XU Zhonghua, WANG Jianhua Statistical analysis of measured surface deformation properties around deep foundation pits in Shanghai area[J]. Journal of Geotechnical Engineering, 2011, 33 (11): 1659- 1666
21 郑刚, 李志伟 不同围护结构变形形式的基坑开挖对邻近建筑物的影响对比分析[J]. 岩土工程学报, 2012, 34 (6): 969- 977
ZHENG Gang, LI Zhiwei Comparative analysis of the impact of pit excavation on neighbouring buildings with different forms of envelope deformation[J]. Journal of Geotechnical Engineering, 2012, 34 (6): 969- 977
[1] 高铭宇,徐敬华,张树有,王康,谭建荣. 基于邻域拓扑重建的人体工学产品定制设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 597-605.
[2] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[3] 冉庆东,郑力新. 基于改进YOLOv5的锂电池极片缺陷检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1811-1821.
[4] 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制[J]. 浙江大学学报(工学版), 2024, 58(7): 1427-1435.
[5] 胡亚元,叶飞. 基于混合物理论的饱和孔隙-裂隙岩体本构模型[J]. 浙江大学学报(工学版), 2024, 58(7): 1446-1456.
[6] 罗向龙,王亚飞,王彦博,王立新. 基于双向门控式宽度学习系统的监测数据结构变形预测[J]. 浙江大学学报(工学版), 2024, 58(4): 729-736.
[7] 刘超,黄尊鹏,黄绍服. 考虑材料形变的旋风铣削螺纹工件表面粗糙度建模[J]. 浙江大学学报(工学版), 2024, 58(4): 761-771.
[8] 王超,朱春洲,邹金锋,刘波,张晗秋,马江锋. 盾构隧道近接斜交侧穿桥梁桩基变形计算方法[J]. 浙江大学学报(工学版), 2024, 58(3): 557-569.
[9] 宋一然,周千寓,邵志文,易冉,马利庄. 基于动态采样对偶可变形网络的实时视频实例分割[J]. 浙江大学学报(工学版), 2024, 58(2): 247-256.
[10] 李瀚源,李兴高,刘杨,杨益,马明哲. 跨活动断层盾构隧道纵向受力及变形特征[J]. 浙江大学学报(工学版), 2023, 57(2): 340-352.
[11] 葛勇强,曹晨,陈家旺,徐春莺,周朋,高峰,梁涛,方玉平. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报(工学版), 2022, 56(9): 1732-1739.
[12] 赵爽,王奎华,吴君涛. 水平循环荷载下砂土中斜单桩累积变形特性[J]. 浙江大学学报(工学版), 2022, 56(7): 1310-1319.
[13] 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测[J]. 浙江大学学报(工学版), 2022, 56(4): 692-701.
[14] 杨淑琴,马玉浩,方铭宇,钱伟行,蔡洁萱,刘童. 基于实例分割的复杂环境车道线检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 809-815, 832.
[15] 郭承乾,马刚,梅江洲,张贵科,李宏璧,周伟. 基于InSAR与多源数据融合的堆石坝外观变形重构[J]. 浙江大学学报(工学版), 2022, 56(2): 347-355.