Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (7): 1446-1456    DOI: 10.3785/j.issn.1008-973X.2024.07.014
交通工程、土木工程     
基于混合物理论的饱和孔隙-裂隙岩体本构模型
胡亚元(),叶飞
浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058
Constitutive model of saturated fractured porous rock mass based on mixture theory
Yayuan HU(),Fei YE
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1572 KB)   HTML
摘要:

考虑饱和孔隙-裂隙岩体中固相材料应变与固相材料压力间的关系,完善模型力学参数的取值理论依据,建立新的本构模型. 在混合物理论框架内,依据变形特征将固相体应变分解为裂隙骨架体应变、孔隙骨架体应变、岩块材料体应变. 假定应变仅取决于能量方程中的共轭应力,基于自由能势函数构建饱和孔隙-裂隙岩体本构模型,根据模型力学含义推导模型力学参数取值方法. 结合达西定律建立流固耦合控制方程. 一维固结算例分析表明,相比其他方法确定的参数,所提方法确定参数计算的初始超孔压偏低、初始沉降偏大,孔隙超孔压消散滞后于裂隙超孔压. 参数敏感性分析表明,增大渗透系数比会显著提高岩体固结速率,增大形状系数对裂隙超孔压消散和岩体沉降影响较小.

关键词: 饱和孔隙-裂隙岩体混合物理论岩块材料变形参数的取值方法一维固结    
Abstract:

Considering the relationship between strain and pressure of solid in the saturated fractured porous rock mass, a new constitutive model was developed to enhance the theoretical foundation for determining the mechanical parameter values of the model. Within the framework of mixture theory, the solid volumetric strain was decomposed into the volumetric strain of fractured skeleton, porous skeleton, and rock material according to the deformation characteristics. Assuming the strain only depended on the conjugate stress in the energy equation, a constitutive model of saturated fractured porous rock mass was developed by the free-energy potential function, and a method for determining the values of mechanical parameters was derived according to the mechanical meaning of the model. The governing equations for fluid-solid coupling were deduced using Darcy’s law. The analysis of the one-dimensional consolidation case showed that, compared with previous parameter value methods, the initial fluid pressure calculated using the parameters determined in the derived method was lower, the initial settlement was larger, and the dissipation of pore excess pressure lagged behind the fracture excess pressure. The sensitivity analysis of the parameters showed that increasing the permeability coefficient ratio greatly improved the consolidation rate of the rock mass while increasing the shape factor had little impact on the dissipation of fracture excess pressure and rock mass settlement.

Key words: saturated fractured porous rock mass    mixture theory    rock material deformation    parameter determination method    one-dimensional consolidation
收稿日期: 2023-06-29 出版日期: 2024-07-01
CLC:  TU 452  
基金资助: 国家自然科学基金资助项目(52178360).
作者简介: 胡亚元(1968—),男,副教授,从事岩土体本构关系研究. orcid.org/0000-0002-5422-7679. E-mail:huyayuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡亚元
叶飞

引用本文:

胡亚元,叶飞. 基于混合物理论的饱和孔隙-裂隙岩体本构模型[J]. 浙江大学学报(工学版), 2024, 58(7): 1446-1456.

Yayuan HU,Fei YE. Constitutive model of saturated fractured porous rock mass based on mixture theory. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1446-1456.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.07.014        https://www.zjujournals.com/eng/CN/Y2024/V58/I7/1446

图 1  饱和孔隙-裂隙岩体[6,9]
图 2  试验数据和模型计算结果
参数Anderson 01Gilson 02
裂隙体积分数${\varphi _{{\text{F0}}}}$0.0131[24]0.00804[24]
煤块弹性模量${E_{\text{r}}}$/$ {\text{MPa}} $1379[24]1379[24]
煤块泊松比$\mu $0.35[24]0.35[24]
$ {C_{{\text{CC}}}} $/$ {\text{MP}}{{\text{a}}^{ - 1}} $3×10?44×10?4
$ {C_{\text{b}}} $/$ {\text{MP}}{{\text{a}}^{ - 1}} $9.53×10?41.1×10?3
$ {\beta _{\text{F}}}+{\beta _{\text{P}}} $0.50.5
表 1  模型拟合采用的参数
参 数数值
孔隙体积分数${\varphi _{{\text{P0}}}}$,裂隙体积分数${\varphi _{{\text{F0}}}}$0.1,0.05
形状系数$\overline \alpha $15
岩块的弹性模量${E_{\text{r}}}$/$ {\text{GPa}} $14.4
岩块材料柔度系数${C_{{\text{RS}}}}$/$ {\text{GP}}{{\text{a}}^{ - 1}} $0.025
孔隙的渗透系数${k_{\text{P}}}$/(${\text{m}} \cdot {{\text{s}}^{ - 1}}$)1×10-10
裂隙渗透系数${k_{\text{F}}}$/(${\text{m}} \cdot {{\text{s}}^{ - 1}}$)1×10?7
岩块泊松比${\mu _{\text{r}}}$,节理泊松比${\mu _{\text{j}}}$0.2
节理法向刚度${k_{\text{n}}}$/($ {\text{GPa}} \cdot {{\text{m}}^{ - 1}} $)8
节理间距$d$/${\text{m}}$0.2
流体材料的柔度系数${C_{{\text{R}}f}}$/$ {\text{GP}}{{\text{a}}^{ - 1}} $0.303
表 2  完整岩块和节理的力学基本参数
参数计算公式数值文献[6]计算公式文献[6]数值
${C_{{\text{HH}}}}$/$ {\text{GP}}{{\text{a}}^{ - 1}} $$ 3{\varphi _{{\text{SP0}}}}(1 - 2{\mu _{\text{r}}})/{E_{\text{r}}} - \varphi _{{\text{SP0}}}^2{C_{{\text{RS}}}}/{\varphi _{{\text{S0}}}} $0.092$ 3(1 - 2{\mu _{\text{r}}})/{E_{\text{r}}} $0.125
${C_{{\text{CC}}}}$/$ {\text{GP}}{{\text{a}}^{ - 1}} $$ 1/({{\text{k}}_{\text{n}}}d)+({\varphi _{{\text{F0}}}}{C_{{\text{HH}}}}/{\varphi _{{\text{SP0}}}}) $0.630$ 1/({{\text{k}}_{\text{n}}}d) $0.625
${C_{{\text{SS}}}}$/$ {\text{GP}}{{\text{a}}^{ - 1}} $$ {C_{{\text{RS}}}}/{\varphi _{{\text{S0}}}} $0.033
$ {C_{\text{b}}} $/$ {\text{GP}}{{\text{a}}^{ - 1}} $$ {C_{{\text{CC}}}}+{C_{{\text{HH}}}}+{C_{{\text{SS}}}} $0.755$ {C_{{\text{CC}}}}+{C_{{\text{HH}}}} $0.75
$ {C_{\text{M}}} $/$ {\text{GP}}{{\text{a}}^{ - 1}} $$ {C_{{\text{HH}}}}+{\varphi _{{\text{SP0}}}}{C_{{\text{SS}}}} $0.123$ {C_{{\text{HH}}}} $0.125
$ G_{\text{b}}^{\text{M}} $/$ {\text{GPa}} $$ {E_{\text{r}}}/2(1+{\mu _{\text{r}}}) $6$ {E_{\text{r}}}/2(1+{\mu _{\text{r}}}) $6
$ {G_{{\text{CC}}}} $/$ {\text{GPa}} $$ 3(1 - 2{v_{\text{j}}})/[2(1+{v_{\text{j}}}){C_{{\text{CC}}}}] $1.19$ 3(1 - 2{v_{\text{j}}})/[2(1+{v_{\text{j}}}){C_{{\text{CC}}}}] $1.2
$ {G_{\text{b}}} $/$ {\text{GPa}} $$ {\varphi _{{\text{SP0}}}}G_{\text{b}}^{\text{M}}{G_{{\text{CC}}}}/({G_{{\text{CC}}}}+{\varphi _{{\text{SP0}}}}G_{\text{b}}^{\text{M}}) $0.98$ {\varphi _{{\text{SP0}}}}G_{\text{b}}^{\text{M}}{G_{{\text{CC}}}}/({G_{{\text{CC}}}}+{\varphi _{{\text{SP0}}}}G_{\text{b}}^{\text{M}}) $0.97
$ {E_{\text{S}}} $/$ {\text{GPa}} $$ (4{G_{\text{b}}}{C_{\text{b}}}+3)/3{C_{\text{b}}} $2.631$ (4{G_{\text{b}}}{C_{\text{b}}}+3)/3{C_{\text{b}}} $2.627
$ {\beta _{\text{F}}} $$ {\text{ }}1 - {C_{\text{M}}}/{C_{\text{b}}} $0.84$ 1 - {C_{\text{M}}}/{C_{\text{b}}} $0.83
$ {B_{{\text{FF}}}} $式(27)1.15×10?4式(27)1.19×10?4
$ {B_{{\text{FP}}}} $, $ {B_{{\text{PF}}}} $式(27)?7.74×10?5式(27)?1.04×10?4
$ {\beta _{\text{P}}} $$ ({C_{\text{M}}} - {\varphi _{{\text{S0}}}}{C_{{\text{SS}}}})/{C_{\text{b}}} $0.12$ ({C_{\text{M}}} - {\varphi _{{\text{S0}}}}{C_{{\text{SS}}}})/{C_{\text{b}}} $0.17
$ {B_{{\text{PP}}}} $式(27)1.08×10?4式(27)1.34×10?4
表 3  饱和孔隙-裂隙岩体的参数
图 3  不同参数确定方法的孔隙和裂隙超孔压消散
图 4  不同参数确定方法的固结沉降
图 5  不同渗透系数比的裂隙和孔隙超孔压消散图
图 6  不同渗透系数比的固结沉降图
图 7  不同形状系数的裂隙和孔隙超孔压消散图
图 8  不同形状系数的固结沉降图
1 张英, 李鹏, 郭奇峰, 等 水力耦合裂隙岩体变形破坏机制研究进展[J]. 哈尔滨工业大学学报, 2020, 52 (6): 21- 41
ZHANG Ying, LI Peng, GUO Qifeng, et al Research progress of deformation and failure mechanism in fractured rock mass under hydromechanical coupling[J]. Journal of Harbin Institute of Technology, 2020, 52 (6): 21- 41
2 蒋中明, 肖喆臻, 唐栋 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报, 2020, 51 (10): 1289- 1298
JIANG Zhongming, XIAO Zhezhen, TANG Dong Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering, 2020, 51 (10): 1289- 1298
3 张国新 多孔连续介质渗透压力对变形应力影响的数值模拟方法探讨[J]. 水利学报, 2017, 48 (6): 640- 650
ZHANG Guoxin Study on numerical simulation method used in analyzing the effect of seepage pressure in continuous medium with pores on deformation and stress[J]. Journal of Hydraulic Engineering, 2017, 48 (6): 640- 650
4 BARRENBLATT G I, ZHELTOV I P, KOCHINA I N Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematics and Mechanics, 1960, 24 (5): 1286- 1303
doi: 10.1016/0021-8928(60)90107-6
5 WILSON R K, AIFANTIS E C On the theory of consolidation with double porosity[J]. International Journal of Engineering Science, 1982, 20 (9): 1009- 1035
doi: 10.1016/0020-7225(82)90036-2
6 ELSWORTH D, BAI M Flow-deformation response of dual-porosity media[J]. Journal of Geotechnical Engineering, 1992, 118 (1): 107- 124
doi: 10.1061/(ASCE)0733-9410(1992)118:1(107)
7 BERRYMAN J G, WANG H F The elastic coefficients of double-porosity models for fluid transport in jointed rock[J]. Journal of Geophysical Research: Solid Earth, 1995, 100 (B12): 24611- 24627
doi: 10.1029/95JB02161
8 刘佑荣, 唐辉明. 岩体力学[M]. 北京: 化学工业出版社, 2008: 14–15.
9 张玉军 遍有节理岩体的双重孔隙-裂隙介质热-水-应力耦合模型及有限元分析[J]. 岩石力学与工程学报, 2009, 28 (5): 947- 955
ZHANG Yujun Coupled thermo-hydro-mechanical model and finite element analyses of dual-porosity fractured medium for ubiquitous-joint rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (5): 947- 955
10 BAI M, ELSWORTH D, ROEGIERS J C Multiporosity multipermeability approach to the simulation of naturally fractured reservoirs[J]. Water Resources Research, 1993, 29 (6): 1621- 1633
doi: 10.1029/92WR02746
11 MA Y, FENG J, GE S, et al Constitutive modeling of hydromechanical coupling in double porosity media based on mixture coupling theory[J]. International Journal of Geomechanics, 2023, 23 (6): 04023056
doi: 10.1061/IJGNAI.GMENG-7731
12 BORJA R I, KOLIJI A On the effective stress in unsaturated porous continua with double porosity[J]. Journal of the Mechanics and Physics of Solids, 2009, 57 (8): 1182- 1193
doi: 10.1016/j.jmps.2009.04.014
13 LI J, YIN Z Y, CUI Y, et al Work input analysis for soils with double porosity and application to the hydromechanical modeling of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 2017, 54 (2): 173- 187
doi: 10.1139/cgj-2015-0574
14 GUO G, FALL M Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts[J]. Engineering Geology, 2018, 243: 253- 271
doi: 10.1016/j.enggeo.2018.07.002
15 胡亚元 基于嵌套思路的饱和孔隙-裂隙介质本构理论[J]. 湖南大学学报: 自然科学版, 2021, 48 (1): 19- 29
HU Yayuan Constitutive theory of saturated pore-fracture media based on nested way[J]. Journal of Hunan University: Natural Sciences, 2021, 48 (1): 19- 29
16 HU Y Y Coupling model of saturated fissured porous media based on porosity-dependent skeleton strains and nesting concept[J]. Computers and Geotechnics, 2022, 151: 104942
doi: 10.1016/j.compgeo.2022.104942
17 李学丰, 王奇, 王兴 岩石细观裂隙组构的平面测定方法[J]. 浙江大学学报: 工学版, 2016, 50 (10): 2037- 2044
LI Xuefeng, WANG Qi, WANG Xing Determination of mesoscopic crack fabric for rock on plan[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 2037- 2044
18 蒋宇静, 李博, 王刚, 等 岩石裂隙渗流特性试验研究的新进展[J]. 岩石力学与工程学报, 2008, 27 (12): 2377- 2386
JIANG Yujing, LI Bo, WANG Gang, et al New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (12): 2377- 2386
doi: 10.3321/j.issn:1000-6915.2008.12.001
19 聂绍凯, 刘鹏飞, 巴特, 等 基于微流控芯片模型的渗流实验与数值模拟[J]. 浙江大学学报: 工学版, 2023, 57 (5): 967- 976
NIE Shaokai, LIU Pengfei, BA Te, et al Seepage experiment and numerical simulation based on microfluidic chip model[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 967- 976
20 HUDSON J A, HARRISON J P, POPESCU M E Engineering rock mechanics: an introduction to the principles[J]. Applied Mechanics Reviews, 2000, 55 (2): B30
21 CHENG A H D. Poroelasticity: Theory and Applications of Transport in Porous Media [M]. [S.l.]: Springer, 2016: 104–105.
22 CHENG A H D Intrinsic material constants of poroelasticity[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104754
doi: 10.1016/j.ijrmms.2021.104754
23 GUO H, TANG H, WU Y, et al Gas seepage in underground coal seams: application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements[J]. Fuel, 2021, 288: 119641
doi: 10.1016/j.fuel.2020.119641
24 ROBERTSON E P. Measurement and modeling of sorption-induced strain and permeability changes in coal [D]: Idaho Falls: Idaho National Lab, 2005.
[1] 胡亚元,王超. 基于变形功的有效应力力学机理探究[J]. 浙江大学学报(工学版), 2019, 53(5): 925-931.
[2] 蔡烽, 何利军, 张青青, 徐美娟, 梅国雄. 考虑土体自重的不排水对称面有限元分析[J]. J4, 2013, 47(12): 2132-2140.
[3] 李传勋,胡安峰,谢康和,张秀丽. 变荷载下基于指数渗流一维固结半解析解[J]. J4, 2012, 46(1): 27-32.
[4] 苏万鑫, 谢康和. 土水特征曲线为直线的非饱和土一维固结计算[J]. J4, 2010, 44(1): 150-155.
[5] 谢康和 温介邦 应宏伟 胡安峰. 考虑应力历史的双层地基一维固结问题[J]. J4, 2007, 41(7): 1126-1131.
[6] 郑灶锋 蔡袁强 徐长节 占宏. 变荷载下半透水边界成层黏弹性地基的一维固结分析[J]. J4, 2005, 39(8): 1234-1237.