Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1732-1739    DOI: 10.3785/j.issn.1008-973X.2022.09.006
土木工程、交通工程     
基于MEMS传感阵列的海底地形形变原位监测装置
葛勇强1(),曹晨1,陈家旺1,2,*(),徐春莺3,周朋1,高峰1,梁涛1,方玉平1
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 海洋感知技术与装备教育部工程研究中心,浙江 舟山 316021
3. 汕头大学 工学院,广东 汕头 515013
In-situ monitoring device for seabed terrain deformation based on MEMS sensor array
Yong-qiang GE1(),Chen CAO1,Jia-wang CHEN1,2,*(),Chun-ying XU3,Peng ZHOU1,Feng GAO1,Tao LIANG1,Yu-ping FANG1
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. The Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhoushan 316021, China
3. College of Engineering, Shantou University, Shantou 515013, China
 全文: PDF(2028 KB)   HTML
摘要:

为了满足南海天然气水合物资源试采环境评价的迫切需要,提出基于微机电系统(MEMS)传感阵列的海底地形形变监测技术及装置. 开发基于MEMS传感阵列的多点同步采集系统,在实验室理想环境测试中,实现 $ 30\;{{\rm{m}}}\times 30\;\mathrm{m} $区域的地形原位监测,地形形变监测分辨率优于5 cm且监测误差小于13 mm. 构建三维海底地形变形矢量模型,利用MEMS传感器的扭转角和各节的长度确定传感阵列变形后的空间位置,采用细分算法拟合获得地形的表面形态. 所提海底地形形变监测装置在水深为1 203 m的天然气水合物试采区完成连续6个月的原位监测. 海试结果表明,MEMS传感阵列观测到的地形最大沉降量为2 cm,最大抬升量为10 cm.

关键词: 微机电系统(MEMS)传感阵列同步采集地形变形重构原位监测    
Abstract:

In order to meet the urgent need of environmental assessment of the trial production of gas hydrate resources in South China Sea, a seabed terrain deformation monitoring technology and device based on micro-electro-mechanical system (MEMS) sensor array was proposed. The multi-point synchronous acquisition system based on MEMS sensor array was developed, and in-situ terrain monitoring in an area of 30 m×30 m was realized in the laboratory tests. The resolution of terrain deformation monitoring was better than 5 cm level, and the monitoring error was less than 13 mm. The three-dimension seabed terrain deformation vector model was constructed. The bend angle of MEMS sensor and the length of each segment were used to determine the position of the sensor array after deformation, and the subdivision algorithm was used to fit the surface shape of the submarine terrain. The proposed seabed terrain deformation monitoring device has completed in-situ consecutively monitoring for 6 months in gas hydrate trial mining area (water depth of 1203 m). The sea trial results show that MEMS sensor array observed a maximum subsidence of 2 cm and a maximum elevation of 10 cm.

Key words: micro-electro-mechanical system (MEMS) sensor array    synchronous acquisition    terrain deformation reconstruction    in-situ monitoring
收稿日期: 2021-09-22 出版日期: 2022-09-28
CLC:  P 751  
基金资助: 国家自然科学基金资助项目(4197060386);国家科技重大专项资助项目(2017YFC0307703);海南省重大科技计划资助项目(ZDKJ202019);浙江省重点研发计划资助项目(2018C03SAA01010,2020C03G2012430)
通讯作者: 陈家旺     E-mail: ge_yongqiang@zju.edu.cn;arwang@zju.edu.cn
作者简介: 葛勇强(1996—),男,博士生,从事基于传感网络的地形形变监测与预警研究. orcid.org/0000-0002-7045-6711.E-mail: ge_yongqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
葛勇强
曹晨
陈家旺
徐春莺
周朋
高峰
梁涛
方玉平

引用本文:

葛勇强,曹晨,陈家旺,徐春莺,周朋,高峰,梁涛,方玉平. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报(工学版), 2022, 56(9): 1732-1739.

Yong-qiang GE,Chen CAO,Jia-wang CHEN,Chun-ying XU,Peng ZHOU,Feng GAO,Tao LIANG,Yu-ping FANG. In-situ monitoring device for seabed terrain deformation based on MEMS sensor array. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1732-1739.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1732

图 1  微机电系统传感阵列海底布放示意图
图 2  地形形变监测装置
图 3  微机电系统传感阵列、传感器节点及传感器舱体的模型和实物图
图 4  微机电系统传感阵列上节点的级联方式
$ \Delta t $/ms $ t $/s $ p $/%
5 0.11 40.700
10 0.22 15.600
20 0.44 1.380
30 0.65 0.230
40 0.87 0.064
50 1.09 0.029
60 1.32 0.012
表 1  采集板问询间隔与传感阵列数据丢包率关系
图 5  微机电系统传感阵列的数据采集与控制系统示意图
图 6  地形变形三维重构过程
图 7  微机电系统传感器弯曲和扭转情况
图 8  微机电系统传感阵列的圆弧模型
图 9  微机电系统传感阵列地形监测区域
图 10  插值算法示意图
图 11  地形变形监测系统35 MPa耐压测试试验
阵列序号 δa δb δc Dmax Dmin
mm
1 2.99 12.70 4.51 34.87 0.60
2 4.47 12.69 5.81 50.47 1.07
3 3.19 12.10 4.36 23.98 1.06
4 1.80 6.70 2.61 16.91 0.30
表 2  微机电系统传感阵列的监测性能
图 12  地形形变监测装置布放和回收
图 13  海底地形形变监测装置的布放状态
图 14  海底地形形变三维图
1 RUPPEL C D, WAITE W F Grand challenge: timescales and processes of methane hydrate formation and breakdown, with application to geologic systems[J]. Journal of Geophysical Research: Solid Earth, 2020, 125 (8): e2018JB016459
2 YOU K, FLEMINGS P B, MALINVERNO A, et al Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57 (4): 1146- 1196
doi: 10.1029/2018RG000638
3 CHONG Z, YANG S, BABU P, et al Review of natural gas hydrates as an energy resource: prospects and challenges[J]. Applied Energy, 2016, 162: 1633- 1652
doi: 10.1016/j.apenergy.2014.12.061
4 XU C, CHEN J, ZHU H, et al Experimental research on seafloor mapping and vertical deformation monitoring for gas hydrate zone using nine-axis MEMS sensor tapes[J]. IEEE Journal of Oceanic Engineering, 2018, 44 (4): 1090- 1101
5 朱超祁, 张民生, 刘晓磊, 等 海底天然气水合物开采导致的地质灾害及其监测技术[J]. 灾害学, 2017, 32 (3): 51- 56
ZHU Chao-qi, ZHANG Min-sheng, LIU Xiao-lei, et al Gas hydrates: production, geohazards and monitoring[J]. Journal of Catastrophology, 2017, 32 (3): 51- 56
doi: 10.3969/j.issn.1000-811X.2017.03.010
6 XU C, CHEN J, YAN D, et al Review of underwater cable shape detection[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33 (3): 597- 606
doi: 10.1175/JTECH-D-15-0112.1
7 李岳明, 李晔, 盛明伟, 等 AUV 搭载多波束声纳进行地形测量的现状及展望[J]. 海洋测绘, 2016, 36 (4): 7- 11
LI Yue-ming, LI Ye, SHENG Ming-wei, et al Application and development of topographic survey using multibeam echosounder equipped on AUV[J]. Hydrographic Surveying and Charting, 2016, 36 (4): 7- 11
doi: 10.3969/j.issn.1671-3044.2016.04.002
8 YOKOYAMA T, SHIMOYAMA M, MATSUDA S, et al. Monitoring system of seafloor subsidence for methane hydrate production test [C]// SPWLA 18th Formation Evaluation Symposium of Japan. Chiba: [s. n.], 2012, 23(3): 425–434.
9 SAITO H, YOKOYAMA T. Development of seafloor displacement monitoring system using a 3-component servo-accelerometer [C]// OCEANS 2008 – MTS/IEEE Kobe Techno-Ocean. Kobe: IEEE, 2008: 1-4.
10 辛明真. 基于GNSS-A浮标的水下非差定位关键技术研究[D]. 青岛: 山东科技大学, 2016.
Xin Ming-zhen. The research on key technologies of non-differential method based on GNSS-A buoys underwater positioning system [D]. Qingdao: Shandong University of Science and Technology, 2016.
11 杨元喜, 刘焱雄, 孙大军, 等. 2020. 海底大地基准网建设及其关键技术[J]. 中国科学: 地球科学, 50(7): 936-945.
YANG Yuan-xi, LIU Yan-xiong, SUN Da-jun, et al. Seafloor geodetic network establishment and key technologies [J]. SCIENTIA SINICA Terrae, 2020, 50(7): 936-945.
12 刘经南, 陈冠旭, 赵建虎, 等 海洋时空基准网的进展与趋势[J]. 武汉大学学报:信息科学版, 2019, 44 (1): 20- 40
LIU Jing-nan, CHEN Guan-xu, ZHAO Jian-hu, et al Development and trends of marine space-time frame network[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (1): 20- 40
13 YOKOTA Y, ISHIKAWA T Shallow slow slip events along the nankai trough detected by GNSS-A[J]. Science Advances, 2020, 6 (3): eaay5786
doi: 10.1126/sciadv.aay5786
14 YOKOTA Y, ISHIKAWA T, WATANABE S I Seafloor crustal deformation data along the subduction zones around Japan obtained by GNSS-A observations[J]. Scientific Data, 2018, 5 (4): 2303- 2322
15 MISHORY J DARPA Eyes proposers’s day for undersea positioning system[J]. Inside the Pentagon, 2015, 31 (15): 11
16 ZHANG K, LI Y, ZHAO J, et al Underwater navigation based on real-time simultaneous sound speed profile correction[J]. Marine Geodesy, 2016, 39 (1): 98- 111
doi: 10.1080/01490419.2015.1082521
17 SCHERWATH M, THOMSEN L, RIEDEL M, et al Ocean observatories as a tool to advance gas hydrate research[J]. Earth and Space Science, 2019, 6 (12): 2644- 2652
doi: 10.1029/2019EA000762
18 XU C, CHEN J, GE Y, et al Monitoring the vertical changes of a tidal flat using a MEMS accelerometer array[J]. Applied Ocean Research, 2020, 101 (1): 102186
19 GE Y, CHEN J, CAO C, et al. Development and sea trial of the terrain monitoring device based on mems sensing array [C]// IOP Conference Series Earth and Environmental Science. Beijing: [s.n.], 2021, 861: 072008.
20 BENNETTP V, ABDOUN T, BARENDSE M Evaluation of soft clay field consolidation using mems-based in-place inclinometer-accelerometer array[J]. Geotechnical Testing Journal, 2015, 38 (3): 290- 302
21 ZHU C, JIA Y, WANG Z, et al Dynamics of bottom boundary layers in the yellow river subaqueous delta based on long-term in-situ observations[J]. Acta Geologica Sinica, 2017, 91 (1): 369- 370
doi: 10.1111/1755-6724.13095
22 PRIOR D B, SUHAYDA J N, LU N, et al Storm wave reactivation of a submarine landslide[J]. Nature, 1989, 341 (6237): 47
doi: 10.1038/341047a0
23 UCHIMURA T, TOWHATA I, WANG L, et al Precaution and early warning of surface failure of slopes using tilt sensors[J]. Soils and Foundations, 2015, 55 (5): 1086- 1099
doi: 10.1016/j.sandf.2015.09.010
24 CHEN J, CAO C, GE Y, et al Experimental research on data synchronous acquisition method of subsidence monitoring in submarine gas hydrate mining area[J]. Sensors, 2019, 19 (19): 4319
doi: 10.3390/s19194319
25 GE Y, CHEN J, CAO C, et al Design and test of a MEMS accelerometer array for submarine landslide displacement monitoring[J]. Marine Technology Society Journal, 2021, 55 (1): 5- 16
doi: 10.4031/MTSJ.55.1.7
[1] 吴泽康,赵姗,李宏伟,姜懿芮. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.
[2] 陈雪云,黄金汉,胡子灿,岑升才. 基于线性逻辑矢量模式的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(1): 47-55.
[3] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[4] 余煇,柴登峰. 基于长方形点过程的遥感图像汽车提取[J]. 浙江大学学报(工学版), 2019, 53(9): 1741-1748.
[5] 周文杰,王立忠,汤旅军,国振,芮圣洁,黄玉佩. 导管架基础海上风机动力响应数值分析[J]. 浙江大学学报(工学版), 2019, 53(8): 1431-1437.
[6] 赫贵然,李奇,冯华君,徐之海,陈跃庭. 基于CNN特征提取的双焦相机连续数字变焦[J]. 浙江大学学报(工学版), 2019, 53(6): 1182-1189.
[7] 赖小波,张学群,许茂盛. 胶质母细胞瘤多模态磁共振图像自动分割[J]. 浙江大学学报(工学版), 2019, 53(2): 355-363.
[8] 唐燕玲,徐卢笛,贺治国,陈葆德,徐杰,李莉. 洋山海域三维潮流和余流特征的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(2): 315-324.
[9] 姜波, 解仑, 刘欣, 韩晶, 王志良. 光流模值估计的微表情捕捉[J]. 浙江大学学报(工学版), 2017, 51(3): 577-583.
[10] 张建廷,张立民. 新型自适应稳健双边滤波图像分割[J]. 浙江大学学报(工学版), 2016, 50(9): 1703-1710.
[11] 文奴,杨世植,崔生成. 基于Curvelet-Wavelet变换高分辨率遥感图像降噪[J]. 浙江大学学报(工学版), 2015, 49(1): 79-86.
[12] 刘俊玮, 韩邦合. 纵横切割的碎片文件复原方法[J]. 浙江大学学报(工学版), 2014, 48(6): 1010-1015.
[13] 崔建涛,王晶,厉小润,赵辽英. 基于空间像素纯度指数的端元提取算法[J]. J4, 2013, 47(9): 1517-1523.
[14] 崔磊, 何勇, 金伟良. 不同海域Semi平台关键节点的疲劳可靠性分析[J]. J4, 2013, 47(8): 1329-1337.
[15] 厉小润, 朱洁尔, 王晶, 赵辽英. 组合核支持向量机高光谱图像分类[J]. J4, 2013, 47(8): 1403-1410.