Please wait a minute...
浙江大学学报(工学版)
自动化技术、信息技术     
基于Curvelet-Wavelet变换高分辨率遥感图像降噪
文奴1,2,3,杨世植1,2,崔生成1,2
1.中科院安徽光学精密机械研究所,安徽 合肥 230031;2.中科院通用光学定标与表征技术重点实验室,安徽 合肥 230031;3.中国科学院大学,北京 100049
High resolution remote sensing image denoising based on Curvelet-Wavelet transform
WEN Nu1,2,3,YANG Shi-zhi1,2,CUI Sheng-cheng1,2
1.Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China; 2. Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(4566 KB)   HTML
摘要:

基于图像卡通-纹理分解模型,利用Curvelet变换和Wavelet变换对图像不同部分具有不同的稀疏表示特性,提出新的混合域遥感图像降噪方法.利用分解模型对图像分别进行Curvelet域和Wavelet域中的系数建模,结合高斯混合尺度模型(GSM)对图像卡通部分和纹理部分进行降噪,之后对图像进行合并.实验结果表明,该方法降噪后图像峰值信噪比(PSNR)明显提高,有效地保持了图像的细节和边缘,抑制了降噪图像的混叠现象.

Abstract:

A novel donoising method in multi-domain based on cartoon and texture decomposition model was proposed to remove the additional noise from remote sensing image. The algorithm considered that Curvelet transform and Wavelet transform have different sparse representation features for different image parts. An undecimated version of orthogonal Wavelet and a wrapping-based Curvelet transform were used. Curvelet coefficients and Wavelet coefficients were constructed by using image decomposition model, and  Gaussian scale mixtures (GSM) model was combined to remove image noise. Experimental results show that the method can effectively preserve image details and edges as well as remove pseudo-Gibbs phenomena, and the peak signal-to-noise ratio evidently increases.

出版日期: 2018-06-06
:  TP 751  
基金资助:

国家“十二五”科技支撑计划资助项目(2011BAB01B03)

通讯作者: 杨世植,男,研究员,博导     E-mail: szyang@aiofm.ac.cn
作者简介: 文奴(1989-),男,博士生,从事光学卫星遥感图像降噪、图像复原、压缩感知和稀疏重构算法的研究.E-mail: wennu1989@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

文奴,杨世植,崔生成. 基于Curvelet-Wavelet变换高分辨率遥感图像降噪[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.01.012.

WEN Nu,YANG Shi-zhi,CUI Sheng-cheng. High resolution remote sensing image denoising based on Curvelet-Wavelet transform. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.01.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.01.012        http://www.zjujournals.com/eng/CN/Y2015/V49/I1/79

[1] DONOHO D L, JOHNSTONE L M. Adapting to unknown smoothness via wavelets shrinkage [J]. Journal of the Americal Statistical Association, 1995, 90(432): 1200-1224.
[2] WANG Zhen-guo, GENG Ze-xun, ZHANG Ya-xin, et al. The MTF measurement of remote sensors and image restoration based on wavelet transform [C]∥ IEEE International Conference on Wavelet Analysis and Pattern Recognition. Beijing: IEEE, 2007: 1921-1924.
[3] DUIJSTER A, BACKER S D, SCHEUNDERS P. Wavelet-based multispectral image restoration [C]∥ IEEE International Geoscience and Remote Sensing Symposium. Boston: IEEE. 2008: 79-82.
[4] DUIJSTER A, SCHEUNDERS P, BACKER S D. Wavelet-based EM algorithm for multispectral-image restoration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3892-3898.
[5] WAINWRIGHT M J, SIMONCELLI  E P. Scale mixtures of Gaussians and the statistics of natural images [C]∥ Advances in Neural Information Processing Systems. Cambridge: Springer, 2000: 855-861.
[6] PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Adaptive Wiener denoising using a Gaussian scale mixture model in the wavelet domain [C]∥ Image Proceedings of IEEE International Conference on Image Processing. Thessaloniki: IEEE, 2001: 37-40.
[7] SIMONCELLI E P, PORTILLA J. Image restoration using Gaussian scale mixtures in the wavelet domain [C]∥ Image Proceedings of IEEE International Conference on Image Processing. Barcelona: IEEE, 2003: 965-968.
[8] PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain [J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.
[9] HAMMOND D K, SIMONCELLI E P. Image denoising with an orientation-adaptive Gaussian scale mixture model [C]∥ IEEE International Conference on Image Processing. Atlanta: IEEE, 2006: 1433-1436.
[10] STARCK J L, CANDS E J, DONOHO D L. The Curvelet transform for image denoising [J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.
[11] DEMANET L, YING L. Curvelets and wave atoms for mirror extended images [C]∥ SPIE Wavelets XII Conference. San Diego: SPIE, 2007.
[12] MA J, PLONKA G. The Curvelet transform [J]. IEEE Signal Processing Magazine, 2010, 27(2): 118-133.
[13] BUADES A, LE T M, MOREL J M, et al. Fast cartoon+ texture image filters [J]. IEEE Transactions on Image Processing, 2010, 19(8): 1978-1986.
[14] MEYER Y. Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures [M]. Boston: American Athematical Society, 2001:22.
[15] CHAMBOLLE A. An algorithm for total variation minimization and applications [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1): 89-97.
[16] RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 60(1): 259-268.
[17] GILLES J, OSHER S. Bregman implementation of Meyers G-norm for cartoon + textures decomposition [R]. Los Angeles, CA:UCLA, 2001: 1173.
[18] CANDES E, DEMANET L, DONOHO D, et al. Fast discrete curvelet transforms [J]. Multiscale Modeling and Simulation, 2006, 5(3): 861-899.
[19] CANDS E J, DONOHO D L. Ridgelets: a key to higher dimensional intermittency? [J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1760): 2495-2509.
[20] BOX G E P, TIAO G C. Bayesian inference in statistical analysis [M]. New York: Wiley, 2011: 40.
[21] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.

[1] 姜波, 解仑, 刘欣, 韩晶, 王志良. 光流模值估计的微表情捕捉[J]. 浙江大学学报(工学版), 2017, 51(3): 577-583.
[2] 张建廷,张立民. 新型自适应稳健双边滤波图像分割[J]. 浙江大学学报(工学版), 2016, 50(9): 1703-1710.
[3] 刘俊玮, 韩邦合. 纵横切割的碎片文件复原方法[J]. 浙江大学学报(工学版), 2014, 48(6): 1010-1015.
[4] 崔建涛,王晶,厉小润,赵辽英. 基于空间像素纯度指数的端元提取算法[J]. J4, 2013, 47(9): 1517-1523.
[5] 厉小润, 朱洁尔, 王晶, 赵辽英. 组合核支持向量机高光谱图像分类[J]. J4, 2013, 47(8): 1403-1410.
[6] 马利刚, 张乐平, 邓劲松, 汪雅婕, 王珂. 资源一号“02C”遥感影像土地利用分类[J]. J4, 2013, 47(8): 1508-1516.
[7] 赖小波,朱世强,方纯洁. 一种复杂背景图像三维重建算法及其医学应用[J]. J4, 2012, 46(11): 2061-2067.
[8] 崔建涛, 厉小润, 赵辽英. 高光谱图像亚像元级地物端元提取方法[J]. J4, 2012, 46(10): 1857-1865.
[9] 车红昆, 吕福在, 项占琴. 基于顺序向前浮动搜索时频优选特征的缺陷识别[J]. J4, 2011, 45(12): 2235-2239.
[10] 陈锦伟,冯华君,徐之海. CCD彩色插值的MTF退化研究[J]. J4, 2011, 45(11): 2063-2067.
[11] 厉小润, 伍小明, 赵辽英. 非监督的高光谱混合像元非线性分解方法[J]. J4, 2011, 45(4): 607-613.
[12] 韩凝, 张秀英, 王小明, 陈利苏, 王珂. 高分辨率影像香榧树分布信息提取[J]. J4, 2010, 44(3): 420-425.
[13] 张登荣, 俞乐, 张汉奎, 等. 光学遥感影像快速镶嵌方法[J]. J4, 2009, 43(11): 1988-1993.