Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (9): 1724-1731    DOI: 10.3785/j.issn.1008-973X.2022.09.005
土木工程、交通工程     
水泥−粉煤灰搅拌桩复合地基承载特性
周盛全1(),章昊琎1,王瑞1,张勇飞2,李栋伟3
1. 安徽理工大学 土木建筑学院,安徽 淮南 232001
2. 成都基准方中建筑设计有限公司合肥分公司,安徽 合肥 230000
3. 东华理工大学 土木与建筑工程学院,江西 南昌 330013
Bearing characteristics of cement-fly ash mixing pile composite foundation
Sheng-quan ZHOU1(),Hao-jin ZHANG1,Rui WANG1,Yong-fei ZHANG2,Dong-wei LI3
1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
2. Hefei Branch of JZFZ Architectural Design Company Limited , Hefei 230000, China
3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China
 全文: PDF(1970 KB)   HTML
摘要:

开展水泥?粉煤灰搅拌桩(CFMP)复合地基模型试验,分析应变片及土压力传感器的信号,探究加载过程中桩身及粉煤灰地基中的应力传递特性. 结果表明:CFMP复合地基荷载沉降曲线为缓降型,CFMP复合地基的承载能力是粉煤灰地基的2.2倍;桩侧摩阻力沿桩身深度呈单峰分布,阻力峰值位于桩身中端;当桩顶荷载累加至1 600 N时,桩侧摩阻力到达极限值,并随荷载增加出现侧摩阻力软化现象;当桩顶荷载达到800 N时,桩端持力层的作用凸显,桩端阻力比进入迅速上升期,CFMP呈现以承担桩侧摩阻力为主的受力性状.

关键词: 模型试验水泥?粉煤灰搅拌桩(CFMP)荷载传递承载性能桩侧摩阻力    
Abstract:

A model test of cement-fly ash mixing pile (CFMP) composite foundation was carried out. By analyzing the signal of strain gauge and earth pressure sensor, the stress transfer characteristics of pile body and fly ash foundation during loading were explored. Results showed that the load settlement curve of CFMP composite foundation was slow reduction type, and the bearing capacity of CFMP composite foundation was 2.2 times of that of fly ash foundation. Pile side resistance distribution along the depth of the pile was unimodal, and the peak value was at the middle of the pile. When the pile top load was accumulated to 1 600 N, pile side resistance reached the limit value, and pile side resistance appeared softening with the increase of the load. When the pile top load reached 800 N, the effect of pile tip bearing layer was prominent, and the pile tip resistance ratio entered a period of rapid rise. And the mechanical properties that mainly to bear the pile side resistance were presented by CFMP.

Key words: model test    cement-fly ash mixing pile (CFMP)    load transfer    load-carrying property    pile side resistance
收稿日期: 2021-09-15 出版日期: 2022-09-28
CLC:  TU 473  
基金资助: 国家自然科学基金资助项目(42061011,41977236);江西省自然科学基金资助项目(20192ACBL20002);安徽省建筑科学研究设计院资助课题(2022-JKYL-006);安徽理工大学2021研究生创新基金资助项目(2021CX2038)
作者简介: 周盛全(1975—),男,教授,博士,从事特殊土地基研究. orcid.org/0000-0001-7229-2258. E-mail: lqpzsq@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周盛全
章昊琎
王瑞
张勇飞
李栋伟

引用本文:

周盛全,章昊琎,王瑞,张勇飞,李栋伟. 水泥−粉煤灰搅拌桩复合地基承载特性[J]. 浙江大学学报(工学版), 2022, 56(9): 1724-1731.

Sheng-quan ZHOU,Hao-jin ZHANG,Rui WANG,Yong-fei ZHANG,Dong-wei LI. Bearing characteristics of cement-fly ash mixing pile composite foundation. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1724-1731.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.09.005        https://www.zjujournals.com/eng/CN/Y2022/V56/I9/1724

图 1  水泥−粉煤灰搅拌桩复合地基现场静载试验图
图 2  水泥−粉煤灰搅拌桩复合地基现场静荷载−位移曲线
图 3  水泥−粉煤灰搅拌桩复合地基模型试验布置图
图 4  粉煤灰颗粒级配曲线
图 5  水泥粉煤灰试块强度曲线
图 6  桩身应变片粘贴示意图
图 7  土压力传感器布置图
图 8  模型试验竖向荷载−位移曲线
图 9  各级荷载作用下桩身轴力曲线
L/cm Ts/N
Fb=200 N Fb=400 N Fb=600 N Fb=800 N Fb=1 000 N Fb=1 200 N Fb=1 400 N Fb=1 600 N Fb=1 800 N Fb=2 000 N
[2.5, 11.5) 64 127 176 192 150 168 182 155 254 271
[11.5, 20.5) 67 135 180 196 290 270 320 337 308 334
[20.5, 29.5) 30 21 87 190 210 220 220 237 292 301
[29.5, 38.5) 16 24 23 80 70 180 180 185 220 246
[38.5, 47.5) 14 41 48 38 110 150 170 182 189 220
表 1  各级荷载作用下桩身轴力沿桩身减幅
图 10  各级荷载作用下侧摩阻力沿桩身变化曲线
图 11  不同桩身处桩侧摩阻力−桩土相对位移曲线
图 12  竖向荷载下水泥−粉煤灰搅拌桩复合地基桩土应力比曲线
图 13  各级荷载作用下水泥−粉煤灰搅拌桩复合地基桩端阻力曲线
图 14  各级荷载作用下水泥−粉煤灰搅拌桩复合地基桩端阻力比曲线
1 冯培峰 电厂粉煤灰高值化利用现状与最新进展[J]. 中国资源综合利用, 2020, 38 (11): 100- 104
FENG Pei-feng Progress and development of high value utilization for coal fly ash from power plant[J]. China Resources Comprehensive Utilization, 2020, 38 (11): 100- 104
doi: 10.3969/j.issn.1008-9500.2020.11.028
2 JIN Y, FENG W P, ZHENG D P, et al Structure refinement of fly ash in connection with its reactivity in geopolymerization[J]. Waste Management, 2020, 118: 350- 359
doi: 10.1016/j.wasman.2020.08.049
3 MIMURA Y, VIMONSATIT V, HORIGUCHI I, et al Tensile mechanical properties of fly ash concrete at early age for thermal stress analysis[J]. Journal of Infrastructure Preservation and Resilience, 2020, 14
4 周盛全, 张勇飞, 徐颖, 等 冲击荷载作用下改良水泥-粉煤灰试样力学特性研究[J]. 振动与冲击, 2021, 40 (2): 119- 126
ZHOU Sheng-quan, ZHANG Yong-fei, XU Ying, et al Research on the dynamic mechanical properties of stabilized cement-fly ash samples[J]. Journal of Vibration and Shock, 2021, 40 (2): 119- 126
5 ZHOU S Q, ZHANG Y F, ZHOU D W et al Fly ash foundation reinforced by cement-soil mixing piles[J]. Dyna Ingeniería E Industria, 2020, 95 (2): 198- 204
6 ZHOU S Q, ZHANG Y F, ZHOU D W et al Experimental study on mechanical properties of fly ash stabilized with cement[J]. Advances in Civil Engineering, 2020, 6410246
7 张传军, 闫强刚, 王秀海, 等 强夯法处理粉煤灰地基效果评价[J]. 中国海洋大学学报, 2012, 42 (增1): 182- 186
ZHANG Chuan-jun, YAN Qiang-gang, WANG Xiu-hai et al Evaluation on effectiveness of dynamic compaction treatment of fly ash ground[J]. Periodical of Ocean University of China, 2012, 42 (增1): 182- 186
8 李志强 穿越粉煤灰沉淀池场区高速公路路基处理方法[J]. 科学技术与工程, 2019, 19 (17): 307- 313
LI Zhi-qiang Reinforcement method of expressway roadbed crossing fly ash settling basin[J]. Science Technology and Engineering, 2019, 19 (17): 307- 313
doi: 10.3969/j.issn.1671-1815.2019.17.046
9 刘香, 史海中, 周鑫 炉渣粉煤灰回填地基的强夯设计参数研究[J]. 水利水电技术, 2019, 50 (4): 179- 189
LIU Xiang, SHI Hai-zhong, ZHOU Xin Study on design parameter of dynamic compaction for foundation backfilled with blast-furnace slag fly ash[J]. Water Resources and Hydropower Engineering, 2019, 50 (4): 179- 189
10 蔡波. 强夯法在处理饱和粉煤灰地基中的应用[J]. 港工技术, 2007(5): 41-43.
CAI Bo. Application of dynamic consolidation in saturated fly ash ground treatment[J]. Port Engineering Technology, 2007(5): 41-43.
11 朱胜明, 马晓燕, 赵静生 粉煤灰填料强夯技术在加固软弱地基中的应用[J]. 建筑技术, 2001, 32 (3): 184- 185
ZHU Sheng-ming, MA Xiao-yan, ZHAO Jing-sheng Heavy ramming backfill fly ash applied to consolidation of soft soil base[J]. Architecture Technology, 2001, 32 (3): 184- 185
doi: 10.3969/j.issn.1000-4726.2001.03.018
12 郑刚, 夏博洋, 周海祚, 等 桩体模量对水泥土搅拌桩复合地基破坏影响研究[J]. 中国公路学报, 2020, 33 (9): 146- 154
ZHENG Gang, XIA Bo-yang, ZHOU Hai-zuo, et al Effect of column elasticity modulus on composite foundation failure of deep mixed columns[J]. China Journal of Highway and Transport, 2020, 33 (9): 146- 154
doi: 10.3969/j.issn.1001-7372.2020.09.015
13 袁文俊, 蔡梓淇, 谢松, 等 基于强度试验的水泥土搅拌桩施工综合参数研究[J]. 湖南大学学报: 自然科学版, 2018, 45 (增1): 46- 51
YUAN Wen-jun, CAI Zi-qi, XIE Song, et al Study on construction technology coordination parameters of cement soil mixed piles based on strength tests[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (增1): 46- 51
14 朱俊樸, 张建辉, 王鹏, 等 大范围软土一级公路水泥土搅拌桩路基沉降数值模拟[J]. 铁道科学与工程学报, 2020, 17 (6): 1390- 1395
ZHU Jun-pu, ZHANG Jian-hui, WANG Peng, et al Numerical simulation of settlement of cement-soil mixing pile subgrade of large-scale soft soil first-class highway[J]. Journal of Railway Science and Engineering, 2020, 17 (6): 1390- 1395
15 SAWA K, TOMOHISA S, TACHIBANA M, et al Hardening treatment of muddy soil with coal fly ashes[J]. Journal of the Society of Materials Science, 2000, 49 (3): 348- 351
doi: 10.2472/jsms.49.348
16 HATUNGIMANA D, TAŞKÖPRÜ C, İÇHEDEF M, et al Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar[J]. Journal of Building Engineering, 2019, 23: 369- 376
doi: 10.1016/j.jobe.2019.01.011
17 王驰, 徐永福, 叶冠林 砼芯水泥土搅拌桩复合地基工作特性分析[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1610- 1617
WANG Chi, XU Yong-fu, YE Guan-lin Analysis of work characteristics of concrete-cored DCM pile composite foundation[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1610- 1617
18 衣平, 娄国充 粉煤灰地基的处理及应用[J]. 粉煤灰综合利用, 2007, (3): 3- 4
YI Ping, LOU Guo-chong Treatment and application of fly ash foundation[J]. Fly Ash Comprehensive Utilization, 2007, (3): 3- 4
doi: 10.3969/j.issn.1005-8249.2007.03.001
19 刘煜民, 黄平, 魏智勇, 等 从试桩看深层搅拌桩在粉煤灰地基中的应用[J]. 武汉大学学报: 工学版, 2007, 40 (增.1): 219- 222
LIU Yu-min, HUANG Ping, WEI Zhi-yong, et al Application of deep mixing pile to fly ash foundation with pile experiments[J]. Engineering Journal of Wuhan University, 2007, 40 (增.1): 219- 222
20 胡贺松, 彭振斌, 杨坪, 等 软土水泥搅拌桩复合地基沉降特性试验研究[J]. 中南大学学报: 自然科学版, 2009, 40 (3): 803- 807
HU He-song, PENG Zhen-bin, YANG Ping, et al Settlement characteristic of composite foundation for cement mixing piles in soft soil[J]. Journal of Central South University: Science and Technology, 2009, 40 (3): 803- 807
21 章定文, 范礼彬, 刘松玉, 等 水泥土搅拌桩复合地基固结机理室内模型试验[J]. 中国公路学报, 2014, 27 (12): 1- 9
ZHANG Ding-wen, FANG Li-bin, LIU Song-yu, et al Laboratory model tests on consolidation mechanism of soft clay improved by deep mixing cement columns[J]. China Journal of Highway and Transport, 2014, 27 (12): 1- 9
doi: 10.3969/j.issn.1001-7372.2014.12.001
22 张伟丽, 蔡健, 林奕禧, 等 水泥土搅拌桩复合地基荷载传递机理的试验研究[J]. 土木工程学报, 2010, 43 (6): 116- 121
ZHANG Wei-li, CAI Jian, LIN Yi-xi et al Experimental study of the load transfer mechanism of cement-soil pile composite foundation[J]. China Civil Engineering Journal, 2010, 43 (6): 116- 121
doi: 10.15951/j.tmgcxb.2010.06.016
23 MA Y, CAO J, HE Y, et al The optimization research on treatment of the soft clay foundation[J]. Applied Mechanics and Materials, 2012, 152: 809- 815
24 KITAZUME M Application of physical modelling for investigating ground failure pattern[J]. Physical Modelling in Geotechnics, 2006, 1: 63- 74
25 龚晓南. 复合地基理论及工程应用: 第3版[M]. 北京: 中国建筑工业出版社, 2018.
26 龚晓南 广义复合地基理论及工程应用[J]. 岩土工程学报, 2007, 29 (1): 1- 13
GONG Xiao-nan Generalized composite foundation theory and engineering application[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (1): 1- 13
doi: 10.3321/j.issn:1000-4548.2007.01.001
27 中华人民共和国住房和城乡建设部. 建筑地基处理技术规范: JGJ 79−2012 [S]. 北京: 中国建筑工业出版社, 2012.
28 徐超, 叶观宝 水泥土搅拌桩复合地基的变形特性与承载力[J]. 岩土工程学报, 2005, (5): 600- 603
XU Chao, YE Guan-bao Deformation characteristics and bearing capacity of soil-cement mixed pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, (5): 600- 603
doi: 10.3321/j.issn:1000-4548.2005.05.024
29 赵春风, 李永刚, 钱涛 水泥土搅拌桩复合地基桩土应力比的解析算法[J]. 中南大学学报:自然科学版, 2012, 43 (6): 2390- 2395
ZHAO Chun-feng, LI Yong-gang, QIAN Tao Analytical calculation of pile-soil stress ratio of cement-soil mixed pile composite foundation[J]. Journal of Central South University: Science and Technology, 2012, 43 (6): 2390- 2395
[1] 刘宏扬,罗强,王威龙,李品锋,马宏飞,张东卿. 土工离心模型试验中路堤分层填筑装置的研制[J]. 浙江大学学报(工学版), 2022, 56(8): 1504-1513.
[2] 朱则昊,仝福生,国振,王立忠,张佳利,陈江波. 重力式基础陆上风机结构长期动力特性试验研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1744-1751.
[3] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[4] 张雅婷,JefferyRoesler. 基于大比尺模型试验的连续配筋混凝土路面开裂研究[J]. 浙江大学学报(工学版), 2020, 54(6): 1194-1201.
[5] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[6] 唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466.
[7] 郭小农, 于孟同, 梁水平, 李检保. 铝合金板件不锈钢螺栓连接的高温承载性能分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1695-1703.
[8] 牛纪强,梁习锋,周丹,刘堂红. 动车组过隧道时设备舱气动效应动模型试验[J]. 浙江大学学报(工学版), 2016, 50(7): 1258-1265.
[9] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[10] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2015, 49(3): 531-537.
[11] 周佳锦,龚晓南,王奎华,张日红. 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报(工学版), 2014, 48(5): 835-842.
[12] 周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 2014, 48(10): 2-3.
[13] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[14] 王奎华, 罗永健, 吴文兵, 吕述晖, 武登辉. 层状地基中考虑桩端应力扩散的单桩沉降计算[J]. J4, 2013, 47(3): 472-479.
[15] 张民锐, 邓华, 刘宏创, 董石麟, 张志宏, 陈玲秋. 月牙形索桁罩棚结构的静力性能模型试验[J]. J4, 2013, 47(2): 367-377.