Please wait a minute...
浙江大学学报(工学版)
土木工程、水利工程、交通工程     
电渗-堆载联合气压劈裂的室内模型试验
胡平川, 周建, 温晓贵, 陈宇翔, 李一雯
浙江大学 滨海与城市岩土工程中心,浙江 杭州 310058
Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing
HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1481 KB)   HTML
摘要:

为了提高电渗法对深层土体的处理效果,提出电渗-堆载联合气压劈裂.开展电渗-堆载和电渗-堆载联合气压劈裂室内模型试验,从裂缝开展、电流变化、电渗排水量、试验后土的抗剪强度以及能耗等多角度对两者进行比较.结果表明:气压劈裂对于电渗排水有一定的促进作用;电渗-堆载联合气压劈裂对于深层土体有较好的处理效果,可为如何提高电渗对深层土体的处理效果提供借鉴;但是,气压劈裂使得能耗、成本增加;试验后期,气压劈裂对于电渗排水的促进作用迅速衰减.

Abstract:

In order to enhance the effect of electro-osmosis to deep soil, a new method named electro-osmosis combined with loading and pneumatic fracturing was proposed. Two laboratory model experiments, one of which was electro-osmosis combined with loading and pneumatic fracturing, the other was electro-osmosis, were conducted. The results of these two experiments were compared on fracturing, current, water discharge, shear strength of the soil, water content and energy consumption. The results demonstrate that pneumatic fracturing is beneficial for electro-osmosis dewatering. Compared to the experiment of electro-osmosis combined with loading,the deep soil is better treated in the experiment of electro-osmosis combined with loading and pneumatic fracturing, which manifests that this method may be of good prospect to enhance the deep soil in electro-osmosis. However, pneumatic fracturing increases energy consumption and costs, which should be solved in the further research. In the last period of the experiment, the enhancement effect of pneumatic fracturing to electro-osmosis dewatering reduces rapidly.

出版日期: 2015-08-01
:  TU 443  
基金资助:

国家自然科学基金资助项目(51478425);浙江省滩涂围垦与岩土工程技术科技创新团队资助项目(2011R50020);浙江省交通规划设计研究院科研资助项目(2013W03)、天津市软土特性与工程环境重点实验室开放基金资助项目(2011SCEEKL004).

通讯作者: 周建,女,副教授     E-mail: zjelim@zju.edu.cn
作者简介: 胡平川(1992-),男,硕士生,主要从事软土地基处理的研究.E-mail: pingchuan1992@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.08.005.

HU Ping-chuan, ZHOU Jian, WEN Xiao-gui, CHEN Yu-xiang, LI Yi-wen. Laboratory model experiment of electro-osmosis combined with loading and pneumatic fracturing. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.08.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.08.005        http://www.zjujournals.com/eng/CN/Y2015/V49/I8/1434

[1] BJERRUM L, MOUM J, EIDE O. Application of electro-osmosis to a foundation problem in a Norwegian Quick Clay [J]. Geotechnique, 1967, 17(3): 214-235.
[2] BURNOTTE F, LEFEBVRE G, GRONDIN G. A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact [J]. Canadian Geotechnical Journal, 2004, 41(6): 1038-1053.
[3] JONES C J F P, FAKHER A, HAMIR R, et al. Geosynthetic material with improved reinforcement capabilities [C]∥ Proceedings of the International Symposium on Earth Reinforcement. Kyushu: A A Balkema, 1996: 865-883.
[4] 陶燕丽,周建,龚晓南,等.铁和铜电极对电渗效果影响的对比试验研究[J].岩土工程学报,2013, 35(2): 388-394.
TAO Yan-li, ZHOU Jian, GONG Xiao-nan, et al. Comparative experiment on influence of ferrum and cuprum electrodes on electroosmotic effects[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 388-394.
[5] 陈卓.通电设计对电渗加固软土效果的试验研究\[D\].杭州:浙江大学,2013.
CHEN Zhuo. Experimental research on the effect of electricity design to electro-osmotic consolidation of soft clay \[D\]. Hangzhou: Zhejiang University, 2013.
[6] MICIC S, SHANG J Q, LO K Y, et al. Electrokinetic strengthening of a marine sediment using intermittent current[J]. Canadian Geotechnical Journal,2001, 38(2): 287-302.
[7] GLENDINNING S, LAMONT-BLACK J, JONES C J F P. Treatment of sewage sludge using electrokinetic geosynthetics[J]. Journal of Hazardous Materials, 2007, 139(3): 491-499.
[8] 李一雯,周建,龚晓南,等.电极布置形式对电渗效果影响的试验研究[J].岩土力学,2013, 34(7): 1972-1978.
LI Yi-wen, ZHOU Jian, GONG Xiao-nan, et al. Experimental research on the effect of electrodes array to electro-osmotic dewatering[J]. Rock and Soil Mechanics, 2013, 34(7): 1972-1978.
[9] 高志义,张美燕,张健.真空预压联合电渗法室内模型试验研究[J].中国港湾建设,2000, (5): 58-61.
GAO Zhi-yi, ZHANG Mei-yan, ZHANG Jian. Laboratory model test of vacuum preloading in combination with electro-osmotic consolidation [J]. China Harbour Engineering, 2000, (5): 58-61.
[10] WAN T Y, MITCHELL J K. Electro-osmotic consolidation of soils [J]. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(5): 473-491.
[11] 赵建国,朱文凯.电渗-强夯综合法加固软弱地基的实践[J].地质与勘探,1994,30(2): 76-80.
[12] OZKAN S, SEALS R, GALE R. Electrokinetic stabilization of kaolinite by injection of Al and PO-34 ions [J]. Ground Improvement, 1999, 3(4): 135-144.
[13] 章定文,刘松玉,顾沉颖,等.土体气压劈裂的室内模型试验[J].岩土工程学报, 2009, 31(12): 1925-1929.
ZHANG Ding-wen, LIU Song-yu, GU Chen-ying, et al. Model tests on pneumatic fracturing in soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1925-1929.
[14] VENKATRAMAN S N, JOHN R S, THOMAS M B, et al. Application of pneumatic fracturing to enhance in situ bioremediation [J]. Journal of Soil Contamination, 1998, 7(2): 143-162.
[15] LARSSON S, DAHLSTROM M, NILSSON B. Uniformity of lime-cement columns for deep mixing: a fie1d study [J]. Ground Improvement, 2005, 9(1): 1-15.
[16] JOHANSSON A W. Observation of pore pressure and soil movements during lime column installation[C]∥ Dry Mix Method for Deep Soil Stabilition. Stockholm: A A Balkema, 1999: 252-258.
[17] VRIEND C, KORT J C M, COLMORGEN E. Soil improvement at the Botlek Railway Tunnel Project Rotterdam, The Netherlands [J]. Geotechnical Special Publication, 2001, 112: 472-483.
[18] SHEN S L, MIURA N, KOGA H. Interaction mechanism between deep mixing column and surrounding clay during installation[J]. Canadian Geotechnical Journal, 2003, 40(2): 293-307.
[19] 刘松玉,韩文君,章定文,等.劈裂真空法加固软土地基试验研究[J].岩土工程学报,2012, 34 (4): 591-599.
LIU Song-yu, HAN Wen-jun, ZHANG Ding-wen, et al. Field pilot tests on combined method of vacuum preloading and pneumatic fracturing for soft ground improvement [J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (4): 591-599.
[20] 温晓贵,胡平川,周建,等.裂缝对电渗模型尺寸效应影响的试验研究[J].岩土工程学报,2014, 36(11): 2054-2060.
WEN Xiao-gui, HU Ping-chuan, ZHOU Jian. et al. Experimental research on the effect of cracks on electro-osmosis model size effect [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2054-2060.
[21] 廖敬堂,廖宏志.真空电渗井点降水及低能量强夯加固技术在软基加固中的应用[J].华南港工. 2009, (1): 30-36.
LIAO Jing-tang, LIAO Hong-zhi. Water level lowing technique using vacuum electrical point well and low energy dynamic compaction on soft ground of berth 5 and 6 of shatian port zone of humen port [J]. South China Harbour Engineering, 2009, (1): 30-36.
[22] 李瑛.软黏土地基电渗固结试验和理论研究[D].杭州:浙江大学, 2011.
LI Ying. Experimental and theoretic study on electro-osmotic consolidation of soft clay foundation[D]. Hangzhou: Zhejiang University, 2011.

[1] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[2] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[3] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[4] 陶燕丽,周建,龚晓南. 电极材料对电渗过程作用机理的试验研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1618-1623.
[5] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[6] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[7] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[8] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[9] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829.
[10] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[11] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592.
[12] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.
[13] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163.
[14] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601.
[15] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.