Please wait a minute...
浙江大学学报(工学版)
土木工程     
电极材料对电渗过程作用机理的试验研究
陶燕丽,周建,龚晓南
浙江大学 滨海和城市岩土工程研究中心, 浙江 杭州 310058
Experimental study on function mechanism of electrode materials upon electro-osmotic process
TAO Yan-li, ZHOU Jian, GONG Xiao-nan
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(981 KB)   HTML
摘要:

分别采用铁、石墨、铜和铝电极开展室内电渗试验,从宏观和微观层面对试验结果进行分析,比较电势损失和离子迁移过程对电渗效果的贡献,并基于微观机理对电渗宏观规律作出合理解释.Fe2+和Cu2+迁移能力较差,大多聚集在阳极附近无法移动,Al3+迁移能力较强,在电场作用下易运移到阴极随水排出;电极材料通过电极反应生成离子进入土壤对电渗的促进甚小,其主要作用在于通过电极腐蚀、钝化、氧化以及电极与土体部分脱离引起电势损失,这是不同电极材料电渗效果差异的根本原因,同时表明电渗排水依赖于土壤中其他离子类型;电能利用率与土体本身性质密切相关,受电极材料影响不大.该研究可进一步揭示电渗机理,为电渗法的工程应用提供指导.

Abstract:

Laboratory electro-osmotic tests using ferrum, graphite, copper and aluminum electrodes were conducted to investigate the impact of electrode materials upon electro-osmotic effect. Contributions of voltage loss and ion migration process to the electro-osmotic effect were compared. Interpretations of macroscopic consequences from the perspective of microscopic mechanism are also presented. Massive accumulations of Fe2+ and Cu2+ are detected in the vicinity of the anode, while Al3+ can easily transport to the cathode and discharge together with water, which demonstrates better migrational ability of Al3+ over Fe2+ and Cu2+. It is revealed that considerable variations of electro-osmotic effect among different electrode materials mainly come from voltage loss, which is a combined result of  erosion, passivation and oxidation of  electrode and the departure with soil mass, rather than the migrational ability of the ions from electrode reactions. The results indicate the dependency of electro-osmotic dewatering upon ions in the soil. It is also found that electrode materials barely occupy any impact on the energy utilization ratio, which is closely related to properties of the soil. The results achieved can further uncover the mechanism of  electro-osmosis as well as provide guidelines for engineering applications of the electro-osmosis technique.

出版日期: 2014-09-01
:  TU 443  
基金资助:

国家自然科学基金资助项目(513202-N11033);浙江省重点科技创新团队计划资助项目(2011R50020)

通讯作者: 周建,女,副教授     E-mail: 1204054856@qq.com
作者简介: 陶燕丽(1989-),女,博士生,主要从事软黏土力学和地基处理方法的研究.E-mail: shanai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陶燕丽,周建,龚晓南. 电极材料对电渗过程作用机理的试验研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.09.011.

TAO Yan-li, ZHOU Jian, GONG Xiao-nan. Experimental study on function mechanism of electrode materials upon electro-osmotic process. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.09.011.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.09.011        http://www.zjujournals.com/eng/CN/Y2014/V48/I9/1618

[1] CASSAGRANDE L. Electro-Osmosis in soils[J]. Geotechnique, 1948, 1(3):159-177.
[2]SHANG J Q, LO K Y. Electrokinetic dewatering of a phosphate clay[J]. Journal of Hazardous Materials, 1997, 55(1/3): 117-133.
[3] LOCKHART N C. Electroosmotic dewatering of clays, III. Influence of clay type, exchangeable cations, and electrode materials[J]. Colloids and Surfaces, 1983, 6(3): 253-269.
[4] MOHAMAD E T, OTHMAN M Z, ADNAN S S, et al. The effectiveness of electrodes types on electro-osmosis of malaysian soil[J]. The Electronic Journal of Geotechnical Engineering, 2011, 16: 887-898.
[5] MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis\[J\]. Proceedings of the ICE - Ground Improvement, 2001, 5(1): 311.
[6] BURTON A S, CLIFFORD J B. Electro-osmotic contaminant-removal process[J]. Journal of Environmental Engineering, 1992, 118(1):84-100.
[7] 陶燕丽, 周建, 龚晓南,等. 铁和铜电极对电渗效果影响的对比试验研究[J]. 岩土工程学报,2013,35(2):388-394.
TAO Yan-li,ZHOU Jian,GONG Xiao-nan et al. Comparative experiment study of the influence of Ferrum and Cuprum electrode on electroosmosis effects[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 388-394.
[8] 陶燕丽, 周建, 龚晓南. 铁、石墨、铜和铝电极的电渗对比试验研究[J]. 岩石力学与工程学报, 2013, 32(Z2): 3355-3362.
TAO Yan-li,ZHOU Jian, GONG Xiao-nan. Comparative experiment study of the electroosmosis of Ferrum, Graphite, Copper, and Aluminum electrode[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Z2): 3355-3362.
[9] 李瑛, 龚晓南, 张雪婵. 电压对一维电渗排水影响的试验研究[J]. 岩土力学, 2011, 32(3): 709-714.
LI Ying, GONG Xiao-nan, ZHANG Xue-chan. Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage[J]. Rock and Soil Mechanics, 2011, 32(3): 709-714.
[10] BJERRUM L, MOUM J, EIDE O. Application of electro-Osmosis to a foundation problem in a Norwegian quick clay[J]. Geotechnique, 1967, 17(3): 214-235.
[11] GRAY D H, MITCHELL J K. Fundamental aspects of electro-osmosis in soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(6): 209-236.
[12] BURNOTTE F, LEFEBVRE G, GRONDIN G. A case record of electroosmotic consolidation of soft clay with improved soil–electrode contact[J]. Canadian Geotechnical Journal, 2004, 41(6): 1038-1053.
[13] KALUMBA D, GLENDINNING S, ROGERS C D F, et al. Dewatering of tunneling slurry waste using electrokinetic geosynthetics[J]. Journal of Environmental Engineering, ASCE, 2009, 135(11): 1227-1236.
[14] JONES C J F P. Briefing: Electrokinetic geosynthetics: getting the most out of mud[J]. Proceedings of the ICE - Civil Engineering, 2004, 157(3): 103.
[15] 胡俞晨, 王钊, 庄艳峰. 电动土工合成材料加固软土地基实验研究[J]. 岩土工程学报, 2005, 27(5): 582586.
HU Yu-chen, WANG Zhao, ZHUANG Yan-feng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 582-586.

[1] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.
[2] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[3] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[4] 胡平川, 周建, 温晓贵, 陈宇翔, 李一雯. 电渗-堆载联合气压劈裂的室内模型试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1434-1440.
[5] 黄博,李玲,凌道盛,陈星耀. 附加衰减模式及其对场地地震响应影响[J]. 浙江大学学报(工学版), 2014, 48(7): 1170-1179.
[6] 陈仁朋, 刘源, 刘声向, 汤旅军. 盾构隧道管片施工期上浮特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1068-1074.
[7] 郭林, 蔡袁强, 谷川, 王军. 循环荷载下软黏土回弹和累积变形特性[J]. J4, 2013, 47(12): 2111-2117.
[8] 梁孟根, 梁甜, 陈云敏. 自由场地液化响应特性的离心机振动台试验[J]. J4, 2013, 47(10): 1805-1814.
[9] 韩同春, 豆红强, 马世国, 王福建. 考虑雨水重分布对均质无限长边坡稳定性的研究[J]. J4, 2013, 47(10): 1824-1829.
[10] 陈卓,周建,温晓贵,陶燕丽. 电极反转对电渗加固效果的试验研究[J]. J4, 2013, 47(9): 1579-1584.
[11] 吴永,裴向军,何思明,李新坡. 降雨型泥石流对沟床侵蚀的水力学机理[J]. J4, 2013, 47(9): 1585-1592.
[12] 牛辉,汪劲丰,张仪萍,张治成,俞亚南. 空间曲线蝶形拱桥顶推施工的多尺度模拟分析[J]. J4, 2013, 47(7): 1205-1212.
[13] 蔡袁强,刘新峰,郭林,孙宏磊,曹志刚. 飞机荷载作用下超载预压软土地基的长期沉降[J]. J4, 2013, 47(7): 1157-1163.
[14] 吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. J4, 2013, 47(4): 595-601.
[15] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507.