Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1504-1513    DOI: 10.3785/j.issn.1008-973X.2022.08.004
土木与交通工程     
土工离心模型试验中路堤分层填筑装置的研制
刘宏扬1(),罗强1,2,*(),王威龙1,李品锋1,马宏飞1,张东卿3
1. 西南交通大学 土木工程学院,四川 成都 610031
2. 高速铁路线路工程教育部重点实验室,四川 成都 610031
3. 中铁二院工程集团有限责任公司,四川 成都 610031
Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests
Hong-yang LIU1(),Qiang LUO1,2,*(),Wei-long WANG1,Pin-feng LI1,Hong-fei MA1,Dong-qing ZHANG3
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. MOE Key Laboratory of High-speed Railway Engineering, Chengdu 610031, China
3. China Railway Eryuan Engineering Group Co. Ltd, Chengdu 610031, China
 全文: PDF(3813 KB)   HTML
摘要:

为了完善土工离心模型试验中的路堤填筑模拟技术,研制了一套在离心机运转条件下可编程控制的路堤分层填筑装置,其由箱式储砂结构、泄砂推拉机构、步进电机控制系统和摄像系统组成. 采用步进电机-行星减速器-滚珠丝杠的组合方案实现大扭矩、高精度动力输出,使低摩阻、小变形的泄砂层与上部储砂结构前后错动,分隔于储砂结构内的高密度锆砂经承力底板上不等径、不等距泄砂孔定量下泄;通过在泄砂孔边缘加装折线形导流板,显著减弱离心场中Coriolis效应对下泄砂粒运动轨迹的影响,降落至地基面预设区的砂粒分层堆积为形状规整的路堤. 试验表明,研制的填筑装置在60g离心加速度下,能模拟最小分层厚度20 mm的路堤填筑过程,模型横断面与设计面积相对误差为0.50%~9.50%,实现了模型与原型路堤在几何、密度和强度等方面的相似,具有系统可靠、结构紧凑、功能完整等技术特点.

关键词: 土工离心模型试验路堤分层填筑模拟泄砂装置Coriolis效应    
Abstract:

A set of programmable staged embankment construction device was developed in order to improve the simulation technology for embankment construction in geotechnical centrifuge modeling. It is functional during centrifuge operation, and consists of a box-like sand container, sand falling push-pull element, a stepper motor controller and a camera system. A combination of stepper motor, planetary gearbox, and ball screw achieves high torque and resolution of dynamic output, so that the sand falling layer, featuring low friction and small deformation, can move back and forth relative to the upper sand container. Then, the high-density zircon sand in the box-like sand container can pass through sand falling holes with different diameters and spacing, which are located on the basal bearing plate. The influence of Coriolis effect on the movement trajectory of the sand particles was significantly reduced by installing segmented deflectors on the edge of sand falling holes. The zircon sands fell along the deflectors to the surface of foundation, and then formed a regular-shaped embankment. The trial experiment showed that the developed apparatus can better simulate the staged construction process of embankment with minimum layer thickness of 20 mm at a centrifugal acceleration of 60g. The relative error of cross section between the simulated embankment and the target embankment was 0.50%~9.50%. This device achieved the similarity between the model embankment and the prototype in terms of geometry, density and strength. The device is characterized by high system reliability, compacted structure and full functionality.

Key words: geotechnical centrifuge model test    embankment    simulation of staged construction    sand falling device    Coriolis effect
收稿日期: 2021-08-18 出版日期: 2022-08-30
CLC:  TU 43  
基金资助: 国家自然科学基金资助项目(51878560);四川省科技计划资助项目 (2021YJ0001)
通讯作者: 罗强     E-mail: 757657495@qq.com;lqrock@swjtu.edu.cn
作者简介: 刘宏扬(1994—),男,博士生,从事路基工程研究. orcid.org/0000-0003-1368-3296. E-mail: 757657495@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘宏扬
罗强
王威龙
李品锋
马宏飞
张东卿

引用本文:

刘宏扬,罗强,王威龙,李品锋,马宏飞,张东卿. 土工离心模型试验中路堤分层填筑装置的研制[J]. 浙江大学学报(工学版), 2022, 56(8): 1504-1513.

Hong-yang LIU,Qiang LUO,Wei-long WANG,Pin-feng LI,Hong-fei MA,Dong-qing ZHANG. Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1504-1513.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.004        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1504

图 1  TLJ-2型离心机及模型箱
图 2  试验用锆砂
图 3  箱式储砂结构示意图
图 4  泄砂推拉机构示意图
图 5  滑轨截面设计示意图
图 6  60g加速度下锆砂自由下落轨迹
图 7  Coriolis力的影响及导流板设计图
图 8  步进电机控制系统
图 9  摄像系统示意图
图 10  路堤分层填筑装置主要结构
图 11  路堤分层填筑装置安装就位图
图 12  模型及储砂箱设计参数
图 13  路堤填筑高度与时间关系
图 14  分层填筑过程中的模型路堤
图 15  模型路堤俯视图
1 章为民, 徐光明 土石坝填筑过程的离心模拟方法[J]. 水利学报, 1997, (2): 9- 14
ZHANG Wei-min, XU Guang-ming Study on modeling the construction process of embankment damsin centrifugal test[J]. Journal of Hydraulic Engineering, 1997, (2): 9- 14
doi: 10.3321/j.issn:0559-9350.1997.02.002
2 巨能攀, 邓天鑫, 李龙起, 等 强震作用下陡倾顺层斜坡倾倒变形机制离心振动台试验[J]. 岩土力学, 2019, 40 (1): 99- 108+117
JU Neng-pan, DENG Tian-xin, LI Long-qi, et al Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake[J]. Rock and Soil Mechanics, 2019, 40 (1): 99- 108+117
doi: 10.16285/j.rsm.2017.1274
3 罗强, 朱江江, 张瑞国, 等 砂土边坡稳定性土工离心模型试验[J]. 岩石力学与工程学报, 2018, 37 (5): 1252- 1259
LUO Qiang, ZHU Jiang-jiang, ZHANG Rui-guo, et al Geotechnical centrifugal model test on sandy soil slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1252- 1259
doi: 10.13722/j.cnki.jrme.2017.1132
4 王海. 土工离心模型试验技术若干关键问题研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019.
WANG Hai. Research on several crucial problems of geotechnical centrifuge modeling techniques [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019.
5 李明, 张嘎, 李焯芬, 等 离心模型试验中边坡开挖设备的研制与应用[J]. 岩土工程学报, 2010, 32 (10): 1638- 1642
LI Ming, ZHANG Ga, LI Chao-fen, et al Development and application of a slope excavation device for centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (10): 1638- 1642
6 张敏, 吴宏伟 边坡离心模型试验中的降雨模拟研究[J]. 岩土力学, 2007, 28 (增1): 53- 57
ZHANG Min, WU Hong-wei Rainfall simulation techniques in centrifuge modelling of slopes[J]. Rock and Soil Mechanics, 2007, 28 (增1): 53- 57
doi: 10.16285/j.rsm.2007.s1.084
7 何奔, 王欢, 洪义, 等 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报:工学版, 2016, 50 (7): 1221- 1229
HE Ben, WANG Huan, HONG Yi, et al Effect of vertical load on lateral behavior of single pile in clay[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (7): 1221- 1229
8 冯振, 殷跃平 我国土工离心模型试验技术发展综述[J]. 工程地质学报, 2011, 19 (3): 323- 331
FENG Zhen, YIN Yue-pin State of the art review of geotechnical centrifuge modeling test in China[J]. Journal of Engineering Geology, 2011, 19 (3): 323- 331
doi: 10.3969/j.issn.1004-9665.2011.03.005
9 BUI PHU DOANH, 罗强, 张良, 等 基于离心模型试验的高强度桩复合地基桩间距效应分析[J]. 铁道学报, 2009, 31 (6): 69- 75
BUI PHU DOANH, LUO Qiang, ZHANG Liang, et al Analysis on pile spacing effect of composite foundation with high strength piles by centrifugal model test[J]. Journal of the China Railway Society, 2009, 31 (6): 69- 75
doi: 10.3969/j.issn.1001-8360.2009.06.012
10 朱江江. 基于离心模型试验的高速铁路中低压缩性土地基沉降变形时间效应分析[D]. 成都: 西南交通大学, 2014.
ZHU Jiang-jiang. Deformation timeliness analysis of the middle-lower compressive soil of high-speed railway based on geotechnical centrifuge model tests[D]. Chengdu: Southwest Jiaotong University, 2014.
11 刘守华, 蔡正银 土工离心模型填料装置研究[J]. 岩土工程学报, 1996, 18 (3): 74- 79
LIU Shou-hua, CAI Zheng-yin Study of the filling devices in the centrifuge model test[J]. Chinese Journal of Geotechnical Engineering, 1996, 18 (3): 74- 79
doi: 10.3321/j.issn:1000-4548.1996.03.011
12 BEASLEY D H, JAMES R G Use of a hopper to simulate embankment construction in a centrifugal model[J]. Géotechnique, 1976, 26 (1): 220- 226
13 DAVIES M C R, PARRYR H G Centrifuge modelling of embankments on clay foundations[J]. Soils and Foundations, 1985, 25 (4): 19- 36
doi: 10.3208/sandf1972.25.4_19
14 KITAZUME M, MARUYAMA K External stability of group column type deep mixing improved ground under embankment loading[J]. Soils and Foundations, 2006, 46 (3): 323- 340
doi: 10.3208/sandf.46.323
15 KITAZUME M, MARUYAMA K Internal stability of group column type deep mixing improved ground under embankment loading[J]. Soils and Foundations, 2007, 47 (3): 437- 455
doi: 10.3208/sandf.47.437
16 KITAZUME M, MARUYAMA K. Centrifuge model tests on failure pattern of group column type deep mixing improved ground[C]// Proceedings of the 17th International Offshore and Polar Engineering Conference. Lisbon: [s. n. ], 2007.
17 DETERT O, KÖNIG D, SCHANZ T Centrifuge modeling of an adaptive foundation system for embankments on soft soils[J]. Geotechniek, 2012, 16 (4): 46
18 BASSETT R H. Centrifugal model tests of embankments on soft alluvial foundations [C]// Proceedings of the 8th International Conference Soil Mechanics and Foundation Engineering. Moscow: [s. n. ], 1973.
19 吴宏伟, 洪义. 用于土工离心机中模拟高速公路建造的装置及方法: CN104501771 B [P]. 2017-04-26.
20 NG C W W, VAN LAAK P A, TANG W H, et al The Hong Kong geotechnical centrifuge and its unique capabilities[J]. Sino-Geotechnics, 2001, 83: 5- 12
21 SCHOFIELD A N Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30 (3): 227- 268
22 肖国先. 料仓内散体流动的数值模拟研究[D]. 南京: 南京工业大学, 2004.
XIAO Guo-xian. Numerical simulation study upon granular materials flow in silos[D]. Nanjing: Nanjing University of Technology, 2004.
[1] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[2] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[3] 张俊峰, 戴小松, 邹维列, 徐顺平, 李子优. 水泥改性固化脱水淤泥路用性能试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2165-2171.
[4] 胡亚元. 考虑次固结时循环荷载引起的软基沉降[J]. J4, 2011, 45(1): 106-111.
[5] 张军, 郑俊杰, 马强. 桩承式加筋路堤荷载分担比计算方法[J]. J4, 2010, 44(10): 1950-1954.
[6] 徐正中 陈仁朋 陈云敏. 托板桩处理路堤技术现场试验研究[J]. J4, 2008, 42(9): 1484-1488.
[7] 朱明双 王金昌 朱向荣. 路堤荷载下现浇筒桩复合地基性状分析[J]. J4, 2006, 40(12): 2186-2190.
[8] 曾开华 俞建霖 龚晓南. 路堤荷载下低强度混凝土桩复合地基性状分析[J]. J4, 2004, 38(2): 185-190.