Please wait a minute...
浙江大学学报(工学版)
土木工程     
静钻根植竹节桩抗压承载性能
周佳锦1,龚晓南1,王奎华1,张日红2
1. 浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058; 2. 浙东建材集团,浙江 宁波 315000
Performance of static drill rooted nodular piles under compression
ZHOU Jia-jin1, GONG Xiao-nan1, WANG Kui-hua1, ZHANG Ri-hong2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
2. ZDOON Building material group, Ningbo 315000, China
 全文: PDF(1128 KB)   HTML
摘要:

为了对静钻根植竹节桩荷载传递机理及承载性能进行研究,进行现场静载试验和ABAQUS有限元建模计算.通过有限元模拟结果与现场试验结果的对比,验证所建立数值模型的可靠性.模拟结果表明:在静钻根植工法中运用竹节桩构成的组合桩基比运用PHC管桩构成的组合桩基的承载力高,且随着自身节间距的增加,竹节桩的承载力有所减小,但减小幅度不大;静钻根植竹节桩承载力受桩周水泥土强度的影响不大;水泥土—桩周土界面摩擦系数是影响组合桩承载力的一个重要因素;在实际工程中,存在一个合理的水泥土半径取值范围.

Abstract:

A series of field tests and finite element software ABAQUS were used to investigate the behavior of the static drill rooted nodular pile under compression. The simulation results  were assumed to be reliable through the comparison with the measured results. The simulation results showed that: the bearing capacity of the nodular pile is higher than the bearing capacity of the pipe pile when using the static drill rooted method|the bearing capacity of the composite pile decreases with the increasing distance of adjacent nodes, while the decrement value is small; the strength of the cemented soil along the shaft has little influence on the bearing capacity of the composite pile; the friction coefficient of the cemented soil-soil interface is an important factor for the behavior of the composite pile under compression; a reasonable range for the radius of the cemented soil is proposed in practical projects.

出版日期: 2014-11-26
:  TU 47  
基金资助:

国家自然科学基金资助项目(50879077).

通讯作者: 龚晓南,男,教授,博导.     E-mail: xngong@hzcnc.com
作者简介: 周佳锦(1989- ),男,博士生,主要从事桩基工程,地基处理及基坑工程等方面的研究工作.E-mail: zjjmuforever@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周佳锦,龚晓南,王奎华,张日红. 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.05.012.

ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong. Performance of static drill rooted nodular piles under compression. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.05.012.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.05.012        http://www.zjujournals.com/eng/CN/Y2014/V48/I5/835

[1] HORIGUCHI T, KARKEE M B. Load tests on bored PHC nodular piles in different ground conditions and the bearing capacity based on simple soil parameters [J]. Proceedings of Technical Report of Japanese Architectural Society, 1995, 1: 8994.
[2] KARKEE M B, HORIGUCHI T, KISHIDA H. Limit state formulation for the vertical resistance of bored PHC nodular piles based on field load test results [C]∥ Eleventh Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Seoul, Korea:\[s.n.\], 1999: 237240.
[3] HONDA T, HIRAI Y, SATO  E. Uplift capacity of belled and multi-belled piles in dense sand [J]. Soils and Foundations, 2011, 51(3):483496.
[4] KARKEE M B, KANAI S, HORIGUCHI T. Quality assurance in bored PHC nodular piles through control of design capacity based on loading test data [C]∥ Proceedings of the 7th International Conference and Exhibition, Piling and Deep Foundations. Vienna, Austria:\[s.n.\], 1998, 1(24):19.
[5] 孙全德. 日本地基处理的一种新工法—水泥土与钢管桩工法[C]∥第四届全国地基处理学术讨论会论文集. 杭州: 浙江大学出版社, 1995: 441445.
SUN Quan-de. A new foundation treatment method used in Japan—the cement soil and steel pipe pile engineering method [C]∥ Fourth National Symposium Proceedings the foundation treatment. Hangzhou: Zhejiang University Press, 1995: 441445.
[6] 郑刚, 姜忻良. 水泥搅拌桩复合地基承载力研究[J]. 岩土力学, 1999, 20(3): 4650.
ZHENG Gang, JIANG Xin-liang. Research on the bearing capacity of cement treated composite foundation [J]. Rock and Soil Mechanics, 1999, 20(3): 4650.
[7] JGJ106-2003. 建筑桩基检测技术规范[S]. 北京: 中国建筑工业出版社, 2003.
JGJ106-2003. Building pile testing technology code [S]. Beijing: China Architecture and Building Press, 2003.
[8] JGJ94-2008. 建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.
JGJ94-2008. Technical code for building pile foundations [S]. Beijing: China Architecture and Building Press, 2008.
[9] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2009.
[10] 黄鹤, 张俐, 杨晓强. 水泥土材料力学性能的试验研究[J]. 太原理工大学学报, 2000, 36(6): 705709.
HUANG He, ZHANG Li, YANG Xiao-qiang. Experimental study of the mechanical properties of the cement soil material [J]. Taiyuan University of Technology, 2000, 36(6): 705709.
[11] 吴迈. 砼芯水泥土桩单桩竖向承载性状研究与可靠度分析[D]. 天津:天津大学, 2008.
WU Mai. Research on vertically bearing behavior and reliability analysis of concrete-cored DCM pile [D]. Tianjin: Tianjin University, 2008.
[12] RANDOLPH M F, WORTH C P. Application of the failure state in undrained simple shear to the shaft capacity of driven piles [J]. Geotechnique, 1981, 31(1): 143157.
[13] 许宏发, 吴华杰, 郭少平. 桩土接触面单元参数分析[J]. 探矿工程, 2002, 5: 1012.
XU Hong-fa, WU Hua-jie, GUO Shao-ping. Study on the parameters of pile soil contact surface element [J]. Exploration Engineering, 2002, 5: 1012.
[14] 高笑娟, 谢镭. 土参数对支盘桩承载力影响的有限元分析[J]. 建筑技术, 2006, 3: 193195.
GAO Xiao-juan, Xie-lei. Finite element method analysis of impact of soil parameters on bearing capacity of squeezed branch pile [J]. Building Technology, 2006,3: 193195.
[15] 任连伟, 刘汉龙, 张华东. 高喷插芯组合桩承载力计算及影响因素分析[J]. 岩土力学, 2010, 31(7): 22192225.
REN Lian-wei, LIU Han-long, ZHANG Hua-dong. Bearing capacity calculation and influence factors analysis of jet grouting soil-cement-pile strengthened pile [J]. Rock and Soil Mechanics, 2010, 31(7): 22192225.

[1] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[2] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[3] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 931-936.
[4] 邹圣锋, 李金柱, 王忠瑾, 兰璐, 王文军, 谢新宇. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856-862.
[5] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[6] 胡亚元. 非饱和多孔岩石的热力学本构理论[J]. 浙江大学学报(工学版), 2017, 51(2): 255-263.
[7] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[8] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[9] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[10] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[13] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[14] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[15] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.