Please wait a minute...
浙江大学学报(工学版)
土木工程     
静钻根植竹节桩荷载传递机理模型试验
周佳锦1,2,龚晓南1,2,王奎华1,2,张日红3,严天龙3
1. 浙江大学 滨海与城市岩土工程研究中心,浙江 杭州 310058;2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 3. 浙东建材集团,浙江 宁波 315000
Model test on load transfer mechanism of a static drill rooted nodular pile
ZHOU Jia-jin1,2, GONG Xiao-nan1,2, WANG Kui-hua1,2, ZHANG Ri-hong3 , YAN Tian-long3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 3. ZDOON Building Materials Group, Ningbo 315000, China
 全文: PDF(1201 KB)   HTML
摘要:

针对静钻根植竹节桩这种新型组合桩基的荷载传递机理的问题,在模型槽中进行竹节桩的模型试验.通过埋设在竹节桩表面与水泥土中的应变片及桩底的土压力传感器对加载过程中桩身、桩端以及水泥土中的应力进行测量.模型试验结果表明:桩侧水泥土与桩端水泥土在荷载传递过程中所起作用不同,靠近桩端水泥土处桩侧水泥土中应力较大,在实际工程中需要提高该区域水泥土强度;模型试验测得的水泥土与桩周土极限侧摩阻力比现场试桩水泥土与桩周土的极限侧摩阻力大,在实际工程中搅拌水泥土时应提高搅拌均匀性以增加桩侧摩阻力;可以用传统桩基沉降计算公式计算静钻根植竹节桩的桩端沉降.

Abstract:

For investigating the load transfer mechanism of the nodular pile, a model test of the pile was conducted in the model box. The axial force of the nodular pile and the mobilized base load were measured by the strain gauges attached on the pile shaft and the soil pressure sensors underneath the pile base respectively,while the stress in the cemented soil was measured with the help of the Polyvinylchlorid (PVC) pipe on which the strain gauges were attached. The experimental results show that: the function of the cemented soil along the shaft is different from that of the cemented soil at the enlarged pile base; the stress in the cemented soil along the shaft is enlarged suddenly when approaching the pile base, thus the cemented soil at this area should be strengthened in actual projects; the ultimate skin friction of the model pile is larger than the skin friction in the field test, thus the skin friction should be improved by increasing the homogeneity of the cemented soil in actual projects; the theoretical tip displacement-tip load curves of traditional pile foundation can be applied for the nodular pile.

出版日期: 2015-08-28
:  TU 47  
基金资助:

国家自然科学基金资助项目(51278450);国家自然科学基金资助项目(51378464)

通讯作者: 龚晓南,男,教授,博导     E-mail: xngong@hzcnc.com
作者简介: 周佳锦(1989- ),男,博士生,从事桩基工程、地基处理及基坑工程研究.E-mail: zjjmuforever@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周佳锦,龚晓南,王奎华,张日红,严天龙. 静钻根植竹节桩荷载传递机理模型试验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.03.019.

ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.03.019.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.03.019        http://www.zjujournals.com/eng/CN/Y2015/V49/I3/531

[1] HORIGUCHI T, KARKEE M B. Load tests on bored PHC nodular piles in different ground conditions and the bearing capacity based on simple soil parameters [J]. Proceedings of Technical Report of Japanese Architectural Society, 1995 (1): 89-94.
[2] KARKEE M B, HORIGUCHI T, KISHIDA H. Limit state formulation for the vertical resistance of bored PHC nodular piles based on field load test results [C]∥ Eleventh Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Seoul, Korea:[s.n.], 1999: 237-240.
[3] KARKEE M B, KANAI S, HORIGUCHI T. Quality assurance in bored phc nodular piles through control of design capacity based on loading test data [C]∥ Proceedings of the 7th International Conference and Exhibition, Piling and Deep Foundations. Vienna, Austria: 1998, 1(24):19.
[4] BORDA O, UNO M, TOWHATA I. Shaft capacity of nodular piles in loose sand[C]∥ Proceedings of the 49th National Conference, Japanese Geotechnical Society. [S. l.]:[s. n.],2007(2):1175-1176.
[5] HONDA T, HIRAI Y, SATO E. Uplift capacity of belled and multi-belled piles in dense sand [J]. Soils and Foundations, 2011, 51(3):483-496.
[6] ZHOU J J, WANG K H, GONG X N, et al. Bearing capacity and load transfer mechanism of a static drill rooted nodular pile in soft soil areas[J]. Journal of Zhejiang University-SCIENCE A :Applied Physics & Engineering, 2013, 14(10):705-719.
[7] 段继伟, 龚晓南, 曾国熙. 水泥土搅拌桩的荷载传递规律[J]. 岩土工程学报, 1994, 16(4): 18.
DUAN Ji-wei, GONG Xiao-nan, ZENG Guo-xi. Load transfer law of DCM pile [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 18.
[8] 刘汉龙, 任连伟, 郑浩, 等. 高喷插芯组合桩荷载传递机制足尺模型试验研究[J]. 岩土力学, 2010, 31(5): 1395-1401.
LIU Han-long, REN Lian-wei, ZHENG Hao, et al. Full-scale model test on load transfer mechanism for jet grouting soil-cement-pile strengthened pile [J]. Rock and Soil Mechanics, 2010, 31(5): 1395-1401.
[9] 梁仁旺, 张明, 白晓红. 水泥土的力学性能试验研究[J]. 岩土力学, 2001, 22(2): 211-213.
LIANG Ren-wang, ZHANG Ming, BAI Xiao-hong. Analysis of laboratory test results 0f cemented soil [J]. Rock and Soil Mechanics, 2001, 22(2): 211-213.
[10] 李建军, 梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学, 2009, 30(2): 474-477.
LI Jian-jun, LIANG Ren-wang. Research on compression strength and modulus of deformation of cemented soil [J]. Rock and Soil Mechanics, 2009, 30(2): 474-477.
[11] 中国建筑科学研究院. JGJ106-2003建筑桩基检测技术规范[S]. 北京: 中国建筑工业出版社, 2003.
[12] 董金荣, 林胜天, 戴一鸣. 大口径钻孔灌注桩荷载传递性状[J]. 岩土工程学报, 1994, 16(6): 123-131.
DONG Jin-rong, LIN Sheng-tian, DAI Yi-ming. The load transferbehavior of large diameter cast-in-situ pile in crushed pebblestratum [J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 123-131.
[13] 中国建筑科学研究院. JGJ94-2008 建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.
[14] RANDOLPH M F, WROTH C P. Analysis of deformation of vertically loaded pile[J]. Journal of the Geotechnical Engineering Division, 1978, 104(12):1465-1488.
[15] HAN J, YE S L. A field study on the behavior of micropiles in clay under compression or tension[J]. Canadian Geotechnical Engineering, 2006, 43(1):19-29.

[1] 郑凌逶, 谢新宇, 谢康和, 李金柱, 刘亦民. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版), 2017, 51(6): 1064-1073.
[2] 邹圣锋, 李金柱, 王忠瑾, 兰璐, 王文军, 谢新宇. 基于GDS渗透仪的渗透试验及经验模型[J]. 浙江大学学报(工学版), 2017, 51(5): 856-862.
[3] 孔令刚, 姚宏波, 詹良通, 陈云敏. 含水率对非饱和土质覆盖层塌陷模式的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 847-855.
[4] 项国圣, 方圆, 徐永福. 阳离子交换对高庙子钠基膨润土膨胀性能的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 931-936.
[5] 臧俊超, 郑凌逶, 谢新宇, 曹丽文,李卓明. 生活源污染土电渗加固试验[J]. 浙江大学学报(工学版), 2017, 51(2): 245-254.
[6] 胡亚元. 非饱和多孔岩石的热力学本构理论[J]. 浙江大学学报(工学版), 2017, 51(2): 255-263.
[7] 吴意谦,朱彦鹏. 潜水地区基坑降水诱发地面沉降的一种改进算法[J]. 浙江大学学报(工学版), 2016, 50(11): 2188-2197.
[8] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[9] 袁炳祥, 吴跃东, 陈锐, 冯仲文, 汪亦显. 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036.
[10] 徐铨彪,陈刚,贺景峰,龚顺风. 复合配筋混凝土预制方桩抗弯性能试验[J]. 浙江大学学报(工学版), 2016, 50(9): 1768-1776.
[11] 单华峰, 夏唐代, 俞峰, 胡军华, 潘金龙. 地下增层开挖托换桩的屈曲稳定临界荷载分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1425-1430.
[12] 何奔,王欢,洪义,王立忠,赵长军,秦肖. 竖向荷载对黏土地基中单桩水平受荷性能的影响[J]. 浙江大学学报(工学版), 2016, 50(7): 1221-1229.
[13] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[14] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[15] 陈仁朋,孟凡衍,李忠超,叶跃鸿,胡琦. 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报(工学版), 2016, 50(5): 856-863.