生物医学工程 |
|
|
|
|
基于注意力机制和深度学习的群体语言想象脑电信号分类 |
周逸凡1( ),张灵维1,2,周正东1,*( ),蔡智1,袁梦瑶1,袁晓曦1,杨泽毅1 |
1. 南京航空航天大学 航空航天结构力学及控制国家重点实验室,江苏 南京 210016 2. 芯原微电子(南京)有限公司,江苏 南京 210000 |
|
Classification of group speech imagined EEG signals based on attention mechanism and deep learning |
Yifan ZHOU1( ),Lingwei ZHANG1,2,Zhengdong ZHOU1,*( ),Zhi CAI1,Mengyao YUAN1,Xiaoxi YUAN1,Zeyi YANG1 |
1. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2. VeriSilicon Holdings (Nanjing) Co. Ltd, Nanjing 210000, China |
引用本文:
周逸凡,张灵维,周正东,蔡智,袁梦瑶,袁晓曦,杨泽毅. 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2024, 58(12): 2540-2546.
Yifan ZHOU,Lingwei ZHANG,Zhengdong ZHOU,Zhi CAI,Mengyao YUAN,Xiaoxi YUAN,Zeyi YANG. Classification of group speech imagined EEG signals based on attention mechanism and deep learning. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2540-2546.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.013
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2540
|
18 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer Cham, 2018: 3−19.
|
19 |
JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]// Proceedings of the 28th International Conference on Neural Information Processing Systems . Montreal: MIT Press, 2015: 2017−2025.
|
20 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11534−11542.
|
21 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 618−626.
|
22 |
BISWAS S, SINHA R. Lateralization of brain during EEG based covert speech classification [C]// 2018 15th IEEE India Council International Conference . Coimbatore: IEEE, 2018: 1−5.
|
23 |
LEE D Y, LEE M, LEE S W. Classification of imagined speech using Siamese neural network [C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics . Toronto: IEEE, 2020: 2979−2984.
|
24 |
COONEY C, KORIK A, FOLLI R, et al Evaluation of hyperparameter optimization in machine and deep learning methods for decoding imagined speech EEG[J]. Sensors, 2020, 20 (16): 4629
doi: 10.3390/s20164629
|
25 |
DAGDEVIR E, TOKMAKCI M Determination of effective signal processing stages for brain computer interface on BCI competition IV data set 2b: a review study[J]. IETE Journal of Research, 2023, 69 (6): 3144- 3155
doi: 10.1080/03772063.2021.1914204
|
1 |
NGUYEN C H, KARAVAS G K, ARTEMIADIS P Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features[J]. Journal of Neural Engineering, 2017, 15 (1): 016002
|
2 |
ROYER A S, DOUD A J, ROSE M L EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18 (6): 581- 589
doi: 10.1109/TNSRE.2010.2077654
|
3 |
BALAM V P, CHINARA S Statistical channel selection method for detecting drowsiness through single-channel EEG-based BCI system[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70 (7): 1- 9
|
4 |
KHARE S K, BAJAJ V, SINHA G R Adaptive tunable Q wavelet transform-based emotion identification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69 (12): 9609- 9617
doi: 10.1109/TIM.2020.3006611
|
5 |
KAMBLE K S, SENGUPTA J Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals[J]. IEEE Sensors Journal, 2021, 22 (3): 2496- 2507
|
6 |
WIERZGAŁA P, ZAPAŁA D, WOJCIK G M Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis[J]. Frontiers in Neuroinformatics, 2018, 12 (11): 78
|
7 |
LEE S H, LEE M, LEE S W. EEG representations of spatial and temporal features in imagined speech and overt speech [C]// Pattern Recognition: 5th Asian Conference . Auckland: Springer International Publishing, 2020: 387−400.
|
8 |
刘艳鹏, 龚安民, 丁鹏, 等 基于言语想象的脑机交互关键技术[J]. 生物医学工程学杂志, 2022, 39 (3): 596- 611 LIU Yanpeng, GONG Anmin, DING Peng, et al Key technology of brain-computer interaction based on speech imagery[J]. Journal of Biomedical Engineering, 2022, 39 (3): 596- 611
doi: 10.7507/1001-5515.202107018
|
9 |
VAN DEN BERG B, VAN DONKELAAR S, ALIMARDANI M. Inner speech classification using EEG signals: a deep learning approach [C]// 2021 IEEE 2nd International Conference on Human-Machine Systems . Magdeburg: IEEE, 2021: 1−4.
|
10 |
RUSNAC A L, GRIGORE O CNN architectures and feature extraction methods for EEG imaginary speech recognition[J]. Sensors, 2022, 22 (13): 4679- 4698
doi: 10.3390/s22134679
|
11 |
LEE D Y, LEE M, LEE S W Decoding imagined speech based on deep metric learning for intuitive BCI communication[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29 (7): 1363- 1374
|
12 |
CORETTO G A P, GAREIS I E, RUFINER H L. Open access database of EEG signals recorded during imagined speech [C]// 12th International Symposium on Medical Information Processing and Analysis . Munich: SPIE, 2017: 1016002.
|
13 |
CAO Y, OOSTENVELD R, ALDAY P M, et al Are alpha and beta oscillations spatially dissociated over the cortex in context-driven spoken-word production?[J]. Psychophysiology, 2022, 59 (6): e13999
doi: 10.1111/psyp.13999
|
14 |
WEI X, SUN T, ZHENG L, et al. Diagnosis of loose core fault in saturable reactor of thyristor valve based on vibration signal time-frequency analysis and CNN [C]// 5th International Conference on Energy Systems and Electrical Power . Changsha: Journal of Physics: Conference Series, 2023, 2584(1): 012079.
|
15 |
PODDER P, KHAN T Z, KHAN M H, et al Comparative performance analysis of hamming, hanning and blackman window[J]. International Journal of Computer Applications, 2014, 96 (18): 1- 7
doi: 10.5120/16891-6927
|
16 |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4, inception-resnet and the impact of residual connections on learning [C]// Proceedings of the AAAI Conference on Artificial Intelligence . San Francisco: AAAI, 2017, 31(1): 4278−4284.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|