计算机技术、控制工程 |
|
|
|
|
全局信息提取与重建的遥感图像语义分割网络 |
梁龙学1( ),贺成龙1,吴小所1,*( ),闫浩文2 |
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 2. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070 |
|
Remote sensing image semantic segmentation network based on global information extraction and reconstruction |
Longxue LIANG1( ),Chenglong HE1,Xiaosuo WU1,*( ),Haowen YAN2 |
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2. School of Surveying and Mapping and Geographic Information, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
梁龙学,贺成龙,吴小所,闫浩文. 全局信息提取与重建的遥感图像语义分割网络[J]. 浙江大学学报(工学版), 2024, 58(11): 2270-2279.
Longxue LIANG,Chenglong HE,Xiaosuo WU,Haowen YAN. Remote sensing image semantic segmentation network based on global information extraction and reconstruction. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2270-2279.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.008
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2270
|
1 |
LONG J, SHELHAMER E, DARRELL T, et al. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Santiago: IEEE, 2015: 3431-3440.
|
2 |
RONNEBERGER O, FISCHER P, BROX T, et al. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the Medical Image Computing and Computer-Assisted Intervention . Munich: Springer, 2015: 234-241.
|
3 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848
|
4 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision . Munich: [s. n. ], 2018: 801-818.
|
5 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017, 30.
|
6 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2023-08-01]. https://arxiv.org/abs/2010.11929.
|
7 |
WANG L, LI R, DUAN C, et al. A novel transformer based semantic segmentation scheme for fine-resolution remote sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
|
8 |
GUO M H, LU C Z, HOU Q, et al. Segnext: rethinking convolutional attention design for semantic segmentation [EB/OL]. [2023-08-01]. https://arxiv.org/abs/2209.08575.
|
9 |
WANG L, LI R, ZHANG C, et al UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196- 214
doi: 10.1016/j.isprsjprs.2022.06.008
|
10 |
DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94- 114
doi: 10.1016/j.isprsjprs.2020.01.013
|
11 |
SUN Y, TIAN Y, XU Y Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning[J]. Neurocomputing, 2019, 330: 297- 304
doi: 10.1016/j.neucom.2018.11.051
|
12 |
吴泽康, 赵姗, 李宏伟, 等 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报: 工学版, 2022, 56 (4): 795- 802 WU Zekang, ZHAO Shan, LI Hongwei, et al Remote sensing image semantic segmentation space global context information network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 795- 802
|
13 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Long Beach: IEEE, 2021: 10012-10022.
|
14 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 3146-3154.
|
15 |
HUANG Z, WANG X, HUANG L, et al. Ccnet: criss-cross attention for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Long Beach: IEEE, 2019: 603-612.
|
16 |
LI R, ZHENG S, ZHANG C, et al ABCNet: attentive bilateral contextual network for efficient semantic segmentation of fine-resolution remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181: 84- 98
doi: 10.1016/j.isprsjprs.2021.09.005
|
17 |
JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks [J]. Advances in Neural Information Processing Systems, 2015, 28: 1–19.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Santiago: IEEE, 2018: 7132-7141.
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: [s. n. ], 2018: 3-19.
|
20 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2021: 13713-13722.
|
21 |
LIU H, LIU F, FAN X, et al Polarized self-attention: towards high-quality pixel-wise mapping[J]. Neurocomputing, 2022, 506: 158- 167
doi: 10.1016/j.neucom.2022.07.054
|
22 |
WANG L, LI R, WANG D, et al Transformer meets convolution: a bilateral awareness network for semantic segmentation of very fine resolution urban scene images[J]. Remote Sensing, 2021, 13 (16): 3065
doi: 10.3390/rs13163065
|
23 |
LI R, ZHENG S, ZHANG C, et al Multiattention network for semantic segmentation of fine-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 13
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|