Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1844-1856    DOI: 10.3785/j.issn.1008-973X.2024.09.009
土木与建筑工程     
面向自组织人群的建筑安全评估算法
武慧(),何高奇*(),李晨,王长波
华东师范大学 计算机科学与技术学院,上海 200062
Building safety assessment algorithm for self-organizing crowds
Hui WU(),Gaoqi HE*(),Chen LI,Changbo WANG
Department of Computer Science and Technology, East China Normal University, Shanghai 200062, China
 全文: PDF(6000 KB)   HTML
摘要:

为了解决室内建筑节点不合理与人群逃生路线选择困难的问题,提出面向自组织人群的建筑安全评估算法. 基于IndoorGML建立室内空间的水平平面结构和垂直层级结构,形成拓扑空间中的节点关联图,以表示多层建筑物的空间结构. 通过对单元空间的风险、通行率的定义, 设计基于A* 算法的安全疏散路线选择算法. 通过分析逃生路线的选择人数、单条逃生路线上节点的最高风险、单条逃生路线的平均逃生时间, 找出室内建筑不合理节点并提出优化方案. 构建模拟场景进行仿真实验, 对比不同路线选择方法的结果,分析并验证所提评估算法的有效性. 结果表明,所提出的方法能够找出建筑拥堵的主要因素及其对疏散的影响程度,有助于在建筑设计阶段开展科学的建筑安全评估.

关键词: 人群仿真建筑安全评估Indoor GML自组织人群安全疏散路线选择    
Abstract:

A building safety assessment algorithm for self-organizing crowds was proposed, in order to resolve the problems of unreasonable indoor building nodes and the difficulty in choosing escape routes for crowds. Based on IndoorGML, the horizontal plane structure and vertical hierarchical structure of indoor space were established to form a node-relation graph in the topological space, so as to represent the spatial structure of multi-story buildings. A safe evacuation route selection algorithm based on the A* algorithm was designed, by defining the risk and the traffic rate of unit space. Unreasonable nodes of indoor buildings were found and optimization solutions were proposed, by analyzing the number of people choosing escape routes, the highest risk of nodes on a single escape route, and the average escape time of a single escape route. A simulation scene was constructed for simulation experiments, and the results of different route selection methods were compared to analyze and prove the effectiveness of the proposed assessment algorithm. Results show that the proposed method can be used to find the main factors of building congestion and the degree of influence on evacuation, which is helpful to carry out scientific building safety assessment in the building design stage.

Key words: crowd simulation    building safety assessment    Indoor GML    self-organized crowd    safe evacuation route selection
收稿日期: 2023-07-03 出版日期: 2024-08-30
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(62002121,62072183);重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX0552);上海市科学技术委员会资助项目(21511100700,22511104600);浙江大学CAD&CG国家重点实验室开放课题(A2203)资助项目.
通讯作者: 何高奇     E-mail: 51194501187@stu.ecnu.edu.cn;gqhe@cs.ecnu.edu.cn
作者简介: 武慧,女,硕士,从事人群仿真研究. orcid.org/0000-0003-3304-7692 . E-mail:51194501187@stu.ecnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
武慧
何高奇
李晨
王长波

引用本文:

武慧,何高奇,李晨,王长波. 面向自组织人群的建筑安全评估算法[J]. 浙江大学学报(工学版), 2024, 58(9): 1844-1856.

Hui WU,Gaoqi HE,Chen LI,Changbo WANG. Building safety assessment algorithm for self-organizing crowds. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1844-1856.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.009        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1844

图 1  室内空间安全性评估整体流程图
图 2  室内空间结构映射到对偶空间的过程
图 3  单元空间分割并组合为室内建筑区域的过程
图 4  室内空间组件 UML 抽象
图 5  室内垂直空间结构映射图
图 6  疏散路线选择整体流程图
图 7  平面结构范围划分和自动融合过程
图 8  NRGexit自动融合过程图
图 9  商场空间建模
图 10  水平平面结构单条逃生路径的火灾源位置图
逃生路线NuSe 逃生路线NuSe
E11-d105-H12-d12012 R12-d102-H11-d11511
E12-d106-H12-d12011R12-d102-H11-g11-G11-d1171
E12-d106-H12-h12-H11-h13-H13-d1161R12-d102-H11-h13-H13-d11610
G11-d11710R13-d107-H11-d11916
G11-d1185R13-d107-H11-g11-G11-d1171
H11-d1153R13-d107-H11-h12-H12-d1202
H11-d1192R14-d108-H11-d11927
H11-g11-G11-d1175R14-d108-H11-g11-G11-d1171
H11-g11-G11-d1183R14-d108-H11-h12-H12-d1201
H11-h12-H12-d1204R14-d108-H11-h13-H13-d1162
H11-h13-H13-d11612R15-d109-H11-d11915
H12-d12019R15-d109-H11-h13-H13-d1161
H13-d1169R16-d111-H11-d11514
H13-h13-H11-d1155R16-d111-H11-h13-H13-d11610
H13-h13-H11-d1192R17-d114-H11-d11917
L11-d113-H13-d11612R17-d114-H11-g11-G11-d1181
L11-d113-H13-h13-H11-d1158R17-d114-H11-h13-H13-d1161
R11-d101-H11-d11516S11-d103-H12-d12025
R11-d101-H11-h13-H13-d1165总计:37条路径300
表 1  逃生路线选择人数对比表
开始房间逃生路线MAXRTAvT/s
R12R12-d102-H11-d1150.0228.51
R12-d102-H11-g11-G11-d1170.5635.94
R12-d102-H11-h13-H13-d116026.68
R12-d102-H11-d115 (Dijkstra)0.0221.35
R13R13-d107-H11-d119035.12
R13-d107-H11-g11-G11-d1170.3325.13
R13-d107-H11-h12-H12-d1200.4131.53
R13-d107-H11-h12-H12-d120 (Dijkstra)0.4120.30
R14R14-d108-H11-d119025.57
R14-d108-H11-g11-G11-d1170.4635.40
R14-d108-H11-h12-H12-d1200.5542.14
R14-d108-H11-h13-H13-d1160.4234.57
R14-d108-H11-d119 (Dijkstra)07.46
H11H11-d1150.4927.44
H11-d1190.5046.52
H11-g11-G11-d1170.4521.27
H11-g11-G11-d1180.4816.54
H11-h12-H12-d1200.3326.69
H11-h13-H13-d1160.3121.06
H11-d115 (Dijkstra)0.4913.88
H11-d119 (Dijkstra)0.5010.10
H11-h12-H12-d120 (Dijkstra)0.335.86
表 2  R12、R13、R14房间逃生路线、危险程度和平均逃生时间表
图 11  逃生路径各节点平均疏散时间占比
图 12  单条逃生路径各节点的拥堵指数随时间的变化
逃生路线te/s
优化前优化后
H11-d11527.4426.26
H13-h13-H11-d11530.1325.85
L11-d113-H13-h13-H11-d11535.6334.55
R11-d101-H11-d11515.2016.39
R12-d102-H11-d11528.5125.40
R16-d111-H11-d11523.5617.84
表 3  d115疏散路线平均逃生时间表的对比
图 13  优化后的R12→H11→H13→D116路径拥堵指数随时间的变化
1 WANG X, ZHENG X, CHENG Y Evacuation assistants: an extended model for determining effective locations and optimal numbers[J]. Physical A: Statistical Mechanics and its Applications, 2012, 391 (6): 2245- 2260
doi: 10.1016/j.physa.2011.11.051
2 HELBING D, MOLNAR P Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51 (5): 4282- 4286
doi: 10.1103/PhysRevE.51.4282
3 VAN DEN BERG J, GUY S, LIN M, et al Reciprocal n-body collision avoidance[J]. Springer Tracts in Advanced Robotics, 2011, 70: 3- 19
4 WU W, LI J, YI W, et al Modeling crowd evacuation via behavioral heterogeneity-based social force model[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23: 1- 11
doi: 10.1109/TITS.2022.3232999
5 MAKMUL J A social force model for pedestrians’ movements affected by smoke spreading[J]. Modelling and Simulation in Engineering, 2020, 8819076: 1- 11
6 SNAPE J, VAN DEN BERG J, GUY S, et al The hybrid reciprocal velocity obstacle[J]. IEEE Transactions on Robotics, 2011, 27: 696- 706
doi: 10.1109/TRO.2011.2120810
7 GONON D, PAEZ GRANADOS D, BILLARD A Robots’ motion planning in human crowds by acceleration obstacles[J]. IEEE Robotics and Automation Letters, 2022, 7 (4): 11236- 11243
doi: 10.1109/LRA.2022.3199818
8 WANG H, LIU Y, ZHOU L Research on an improved cellular automata model[J]. Applied Mechanics and Materials, 2012, 160: 109- 114
doi: 10.4028/www.scientific.net/AMM.160.109
9 ANIFOWOSE M, SAID I, ISMAIL R Assessment of building security cost determinants effects[J]. ARPN Journal of Engineering and Applied Sciences, 2015, 10: 6710- 6718
10 ADELSBERGER Z, GRUBOR G, NAD I Methodological approach to risk assessment in building security[J]. Collegium Antropologicum, 2014, 38: 215- 227
11 ÖKSüZ N K, TANYER A M, PEKERIçLI M K Fuzzy-based escape route fire-vulnerability assessment model for indoor built environment[J]. Indoor and Built Environment, 2022, 32 (1): 116- 132
12 MIKOLAI I, TKáč J Escape route typology[J]. Applied Mechanics and Materials, 2016, 820: 402- 407
doi: 10.4028/www.scientific.net/AMM.820.402
13 ZHANG L, WANG X, FANG H, et al Numerical study of the effect of gender composition and partitioning boards on evacuation in a two-line transfer transit rail subway station[J]. Indoor and Built Environment, 2022, 31 (7): 1858- 1873
doi: 10.1177/1420326X221079215
14 SONG Y, NIU L, LIU P, et al Fire hazard assessment with indoor spaces for evacuation route selection in building fire scenarios[J]. Indoor and Built Environment, 2021, 31 (2): 452- 465
15 MALHOTRA A, RAMING S, FRISCH J, et al Open-source tool for transforming citygml levels of detail[J]. Energies, 2021, 14 (24): 8250
doi: 10.3390/en14248250
16 BLANC N, CANNATA M, MAXIME C, et al. Ogc api state of play: a practical testbed for the national spatial data infrastructure in switzerland [EB/OL]. [2023-06-01]. https://api.semanticscholar.org/CorpusID:251416090.
17 KONDE A, TAUSCHER H, BILJECKI F, et al Floor plans in citygml[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 4: 25- 32
18 LI K J Indoorgml: a standard for indoor spatial modeling[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41 (B4): 701- 704
19 DIAKITé A, ZLATANOVA S, LI K J About the subdivision of indoor spaces in indoorgml[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 4: 41- 48
20 ALATTAS A, ZLATANOVA S, OOSTEROM P, et al Supporting indoor navigation using access rights to spaces based on combined use of indoorgml and ladm models[J]. ISPRS International Journal of Geo-Information, 2017, 6 (12): 384
doi: 10.3390/ijgi6120384
21 KIM S H, LI K J, CHO H G A flexible framework for covering and partitioning problems in indoor spaces[J]. ISPRS International Journal of Geo-Information, 2020, 9 (11): 618
doi: 10.3390/ijgi9110618
22 CURTIS S, BEST A, MANOCHA D. Menge: a modular framework for simulating crowd movement [J]. Collective Dynamics , 2016, 1: 1−40.
23 KIM S, BERA A, BEST A, et al. Interactive and adaptive data-driven crowd simulation [C]// 2016 IEEE Virtual Reality . Greenville: [s.n.], 2016: 29−38.
24 GOLAS A, NARAIN R, CURTIS S, et al Hybrid long-range collision avoidance for crowd simulation[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20 (7): 1022- 1034
25 NARANG S, BEST A, CURTIS S, et al Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors[J]. PLOS ONE, 2015, 10: e0117856
doi: 10.1371/journal.pone.0117856
26 BEST A, CURTIS S, KASIK D, et al Ped-air: a simulator for loading, unloading, and evacuating aircraft[J]. Transportation Research Procedia, 2014, 2: 273- 281
doi: 10.1016/j.trpro.2014.09.052
27 CUESTA A, ABREU O, BALBOA A, et al Real-time evacuation route selection methodology for complex buildings[J]. Fire Safety Journal, 2017, 91: 947- 954
doi: 10.1016/j.firesaf.2017.04.011
28 NIU L, WANG Z, SONG Y, et al An evaluation model for analyzing robustness and spatial closeness of 3d indoor evacuation networks[J]. ISPRS International Journal of Geo-Information, 2021, 10: 331
doi: 10.3390/ijgi10050331
29 SINPAN N, SASITHONG P, CHAUDHARY S, et al. Simulative investigations of crowd evacuation by incorporating reinforcement learning scheme [C]// Proceedings of the 6th International Conference on Algorithms, Computing and Systems . [s.l.]: Association for Computing Machinery, 2022: 1−5.
[1] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[2] 艾青林,杨佳豪,崔景瑞. 基于自适应增殖数据增强与全局特征融合的小目标行人检测[J]. 浙江大学学报(工学版), 2023, 57(10): 1933-1944.
[3] 李安腾,崔鹏杰,袁野,王国仁. 基于GPU的子图匹配优化技术[J]. 浙江大学学报(工学版), 2023, 57(9): 1856-1864.
[4] 黄建平,陈可,张建松,沈思琪. 时序基因驱动的特征表示模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1354-1364.
[5] 艾青林,崔景瑞,吕冰海,童桐. 基于损伤区域融合变换的轴承鼓形滚子表面损伤检测方法[J]. 浙江大学学报(工学版), 2023, 57(5): 1009-1020.
[6] 王永生,关世杰,刘利民,高静,许志伟,刘广文. 基于XGBoost扩展金融因子的风电功率预测方法[J]. 浙江大学学报(工学版), 2023, 57(5): 1038-1049.
[7] 张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.
[8] 鲁建厦,包秦,汤洪涛,邵益平,赵文彬. 无设备人体追踪系统的择优标签方法[J]. 浙江大学学报(工学版), 2023, 57(2): 415-425.
[9] 刘雪娇,王慧敏,夏莹杰,赵思苇. 具有隐私保护的车联网空间众包任务分配方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1267-1275.
[10] 陈玉,戴华,李博涵,杨庚. 面向移动对象的松散型传染模式挖掘方法[J]. 浙江大学学报(工学版), 2022, 56(2): 280-287.
[11] 林鹤翔,乔连鹏,袁野,王国仁. 基于GPU的大图数据上的关键字检索算法[J]. 浙江大学学报(工学版), 2022, 56(2): 271-279.
[12] 黄新宇,游帆,张沛,张昭,张柏礼,吕建华,徐立臻. 基于多分类及特征融合的静默活体检测算法[J]. 浙江大学学报(工学版), 2022, 56(2): 263-270.
[13] 梁秀波,吴俊涵,赵昱,尹可挺. 区块链数据安全管理和隐私保护技术研究综述[J]. 浙江大学学报(工学版), 2022, 56(1): 1-15.
[14] 黄靖,钟书远,文元桥,罗坤. 用于交通流预测的自适应图生成跳跃网络[J]. 浙江大学学报(工学版), 2021, 55(10): 1825-1833.
[15] 陈智超,焦海宁,杨杰,曾华福. 基于改进MobileNet v2的垃圾图像分类算法[J]. 浙江大学学报(工学版), 2021, 55(8): 1490-1499.