电气工程 |
|
|
|
|
基于XGBoost扩展金融因子的风电功率预测方法 |
王永生1,2( ),关世杰1,2,刘利民1,2,*( ),高静3,许志伟1,2,刘广文1,2 |
1. 内蒙古工业大学 数据科学与应用学院,内蒙古自治区 呼和浩特 010080 2. 内蒙古自治区基于大数据的软件服务工程技术研究中心,内蒙古自治区 呼和浩特 010080 3. 内蒙古农业大学 计算机与信息学院,内蒙古自治区 呼和浩特 010018 |
|
Wind power prediction method based on XGBoost extended financial factor |
Yong-sheng WANG1,2( ),Shi-jie GUAN1,2,Li-min LIU1,2,*( ),Jing GAO3,Zhi-wei XU1,2,Guang-wen LIU1,2 |
1. School of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China 2. Software Service Engineering Technology Research Center, Hohhot 010080, China 3. School of Computer and Information, Inner Mongolia Agricultural University, Hohhot 010018, China |
引用本文:
王永生,关世杰,刘利民,高静,许志伟,刘广文. 基于XGBoost扩展金融因子的风电功率预测方法[J]. 浙江大学学报(工学版), 2023, 57(5): 1038-1049.
Yong-sheng WANG,Shi-jie GUAN,Li-min LIU,Jing GAO,Zhi-wei XU,Guang-wen LIU. Wind power prediction method based on XGBoost extended financial factor. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1038-1049.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.020
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I5/1038
|
1 |
钱政, 裴岩, 曹利宵, 等 风电功率预测方法综述[J]. 高电压技术, 2016, 42 (4): 1047- 1060 QIAN Zheng, PEI Yan, CAO Li-xiao, et al Overview of wind power prediction methods[J]. High Voltage Engineering, 2016, 42 (4): 1047- 1060
doi: 10.13336/j.1003-6520.hve.20160405021
|
2 |
国家能源局. 我国风电并网装机突破3亿千瓦[EB/OL]. [2021-11-30]. http://www.nea.gov.cn/2021-11/30/c_1310343188.htm.
|
3 |
刘芳, 汪震, 刘睿迪, 等 基于组合损失函数的BP神经网络风力发电短期预测方法[J]. 浙江大学学报:工学版, 2021, 55 (3): 594- 600 LIU Fang, WANG Zhen, LIU Rui-di, et al Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (3): 594- 600
|
4 |
李相俊, 许格健 基于长短期记忆神经网络的风力发电功率预测方法[J]. 发电技术, 2019, 40 (5): 426- 433 LI Xiang-jun, XU Ge-jian Wind power prediction method based on long short-term memory neural network[J]. Power Generation Technology, 2019, 40 (5): 426- 433
doi: 10.12096/j.2096-4528.pgt.19108
|
5 |
谢小瑜, 周俊煌, 张勇军, 等 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45 (8): 175- 184 XIE Xiao-yu, ZHOU Jun-huang, ZHANG Yong-jun, et al Ultra-short-term power generation prediction method of renewable energy based on W-BiLSTM[J]. Automation of Electric Power Systems, 2021, 45 (8): 175- 184
|
6 |
王依宁, 解大, 王西田, 等 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39 (14): 4070- 4081 WANG Yi-ning, XIE Da, WANG Xi-tian, et al Prediction of wind turbine network interaction based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39 (14): 4070- 4081
|
7 |
CHENG W Y Y, LIU Y, BOURGEOIS A J, et al Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation[J]. Renewable Energy, 2017, 107: 340- 351
doi: 10.1016/j.renene.2017.02.014
|
8 |
王伟胜, 王铮, 董存, 等 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45 (1): 17- 27 WANG Wei-sheng, WANG Zheng, DONG Cun, et al Current situation and error analysis of short-term wind power prediction technology in china[J]. Automation of Electric Power Systems, 2021, 45 (1): 17- 27
|
9 |
JU Y, SUN G Y, CHEN Q H, et al A model combining convolutional neural network and light GBM algorithm for ultra-short-term wind power forecasting[J]. Ieee Access, 2019, 7: 28309- 28318
doi: 10.1109/ACCESS.2019.2901920
|
10 |
FU Y W, HU W, TANG M L, et al. Multi-step ahead wind power forecasting based on recurrent neural networks [C]// IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Kota Kinabalu: IEEE, 2018: 217-222.
|
11 |
ZHANG Y, LI Y T, ZHANG G Y Short-term wind power forecasting approach based on Seq2Seq model using NWP data[J]. Energy, 2020, 213: 118371
|
12 |
SHARIFIAN A, GHADI M J, GHAVIDEL S, et al A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data[J]. Renewable energy, 2018, 120: 220- 230
doi: 10.1016/j.renene.2017.12.023
|
13 |
Do we really need deep learning models for time series forecasting? [EB/OL]. [2022-05-06]. https://arxiv.org/abs/2101.02118.
|
14 |
何龙. 《深入理解XGBoost: 高效机器学习算法与进阶》[M]. 北京: 机械工业出版社, 2020: 146-156.
|
15 |
Chen T Q, Guestrin C. Xgboost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794.
|
16 |
杨安, 蒋群, 孙钢, 等 金融技术指标的用电数据分析[J]. 计算机应用, 2022, 42 (3): 904- 910 YANG An, JIANG Qun, SUN Gang, et al Electricity data analysis of financial technical indicators[J]. Journal of Computer Applications, 2022, 42 (3): 904- 910
|
17 |
DING B Y, LI L, ZHU Y L, et al. Research on comprehensive analysis method of stock KDJ index based on K-means clustering [C]// 3rd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2019). Dalian: Atlantis Press, 2019: 484-491.
|
18 |
ALMEIDA R D, REYNOSOMEZA G, STEINER M T A. Multi-objective optimization approach to stock market technical indicators [C]// IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 3670-3677.
|
19 |
ZHENG H, WU Y H A xgboost model with weather similarity analysis and feature engineering for short-term wind power forecasting[J]. Applied Sciences, 2019, 9 (15): 3019
doi: 10.3390/app9153019
|
20 |
王桂兰, 赵洪山, 米增强 XGBoost算法在风机主轴承故障预测中的应用[J]. 电力自动化设备, 2019, 39 (1): 73- 77 WANG Gui-lan, ZHAO Hong-shan, MI Zeng-qiang Application of XGBoost algorithm in fault prediction of fan main bearing[J]. Electric Power Automation Equipment, 2019, 39 (1): 73- 77
doi: 10.16081/j.issn.1006-6047.2019.01.011
|
21 |
刘波, 秦川, 鞠平, 等 基于XGBoost与Stacking模型融合的短期母线负荷预测[J]. 电力自动化设备, 2020, 40 (3): 147- 153 LIU Bo, QIN Chuan, JU Ping, et al Short-term bus load forecasting based on fusion of XGBoost and stacking models[J]. Electric Power Automation Equipment, 2020, 40 (3): 147- 153
doi: 10.16081/j.epae.202002024
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|