Please wait a minute...
J4  2012, Vol. 46 Issue (5): 837-841    DOI: 10.3785/j.issn.1008-973X.2012.05.010
自动化技术、电气工程     
基于遗传BP神经网络的短期风速预测模型
王德明1, 王莉1,2, 张广明1
1. 南京工业大学 自动化与电气工程学院, 南京 210009;2. 南京大学 工程管理学院, 南京 210093
Short-term wind speed forecast model for wind farms based on
genetic BP neural network
WANG De-ming1, WANG Li1,2,ZHANG Guang-ming1
1. School of Automation and Electrical Engineering, Nanjing University of Technology, Nanjing 210009, China;
2. School of Engineering and Management, Nanjing University, Nanjing 210093, China
 全文: PDF  HTML
摘要:

为了提高风电场短期风速预测精度,提出将遗传算法和反向传播(BP)神经网络相结合的预测模型.采用自相关性分析找出对预测值影响最大的几个历史时刻风速,以历史时刻的风速、温度、湿度和气压作为BP神经网络预测模型的输入变量;利用遗传算法的全局搜索能力获得BP神经网络优化的初始权值和阈值;采用优化后的BP神经网络分别建立1、2、3 h的短期风速预测模型.实验结果表明,该方法较BP神经网络具有预测精度高、收敛速度快的优点.

Abstract:

To improve the short-term wind speed forecasting accuracy for wind farm, a prediction model based on back propagation(BP) neural network combining genetic algorithm was proposed. Autocorrelation analysis was used to discover historical wind speeds which have significant influence on predicted wind speed. The input variables of BP neural network predictive model were historical wind speeds, temperature, humidity and air pressure. Genetic algorithm was used to optimize the weights and bias of BP neural network. Optimized BP neural network was applied to predict wind speed an hour before, two hours before and three hours before individually. The simulation results show that the proposed method offers the advantages of high precision and fast convergence in contrast with BP neural network.

出版日期: 2012-05-01
:  TM 614  
基金资助:

江苏省科技厅工业科技支撑计划资助项目(BE2009166).

通讯作者: 王莉,女,讲师.     E-mail: silyzheda@sina.com
作者简介: 王德明(1956-),男,教授,从事新能源及其控制研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王德明, 王莉, 张广明. 基于遗传BP神经网络的短期风速预测模型[J]. J4, 2012, 46(5): 837-841.

WANG De-ming, WANG Li,ZHANG Guang-ming. Short-term wind speed forecast model for wind farms based on
genetic BP neural network. J4, 2012, 46(5): 837-841.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.05.010        http://www.zjujournals.com/eng/CN/Y2012/V46/I5/837

[1] FAN S, LIAO J R, YOKYAMA R, et al. Forecasting the wind generation using a twostage network based on meteorological information [J]. IEEE Transactions on Energy Conversion, 2009, 24(2):474-482.
[2] KUSIAK A, ZHANG Z J. Adaptive control of a wind turbine with data mining and swarm intelligence [J]. IEEE Transactions on Sustainable Energy, 2011, 2(1):28-36.
[3] 纪国瑞. 风电场风速软测量与预测及短期风速数值模拟方法研究[D]. 保定:华北电力大学, 2009.
JI Guorui. The research on methods of soft sensor, prediction and numerical simulation for wind speed in windfarm[D]. Baoding: North China Electric Power University, 2009.
[4] 孙元章,吴俊,李国杰,等. 基于风速预测和随机规划的风电场电力系统动态经济调度 [J]. 中国电机工程学报, 2009, 29(4): 41-47.
SUN Yuanzhang, WU Jun, LI Guojie, et al. Dynamic economic dispatch considering wind power generation based on wind speed forecasting and stochastic programming [J]. Proceedings of CSEE, 2009, 29(4): 41-47.
[5] 李杏培. 风电场风速及风电机组发电量的短期预报方法研究[D]. 保定:华北电力大学, 2009.
LI Xinpei. Research on shotterm prediction methods of wind speed and wind turbine power generation[D]. Baoding: North China Electric Power University, 2009.
[6] COPPIN P, KATZFEY J. The feasibility of wind power production forecasting in the Australian context[R]. Aspendale, Australia: CSIRO Atmospheric Research Centre, 2003.
[7] POURMOUSAVI KANI S A, AREDHALI M M. Very shortterm wind speed prediction: A new artificial neural networkMarkov chain model [J]. Energy Conversion and Management, 2011, 52(1):738-745.
[8] 丁明,张立军,吴义纯. 基于时间序列分析的风电场风速预测模型 [J]. 电力自动化设备,2005, 25(8): 32-34.
DING Ming, ZHANG Lijun, WU Yichun. Wind speed forecast model for wind farms based on time series analysis [J]. Electric Power Automation Equipment, 25(8): 32-34.

[9] 潘迪夫,刘李燕. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86.
PAN Difu, LIU Liyan. A wind speed forecasting optimization model for wind farms based on time series analysis and kalman filter algorithm [J]. Power System Technology, 2008, 32(7): 82-86.
[10] WANG C, YAN W J. Shortterm wind speed prediction of wind farms based on improved particle swarm optimization algorithm and neural network [C]∥ International conference on Mechanic Automation and control engineering. Wuhan: [s. n.], 2010:5186-5190.
[11] DAMOUSIS I G, ALEXIADIS M C, THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J]. IEEE Trans on Energy Conversion, 2004, 19(2): 352-361.
[12] 杜颖, 卢继平, 李青, 等. 基于最小二乘支持向量机的风电场短期风速预测 [J]. 电网技术, 2008, 32(15): 62-66.
DU Yin, LU Jiping, LI Qing, et al. Shortterm wind speed forecasting of wind farm based on least squaresupport vector machine [J]. Power System Technology, 2008, 32(15): 62-66.
[13] 彭怀午, 杨晓峰, 刘方锐. 基于SVM方法的风电场短期风速预测 [J]. 电网与清洁能源, 2009, 25(7): 48-52.
PENG Huaiwu, YANG Xiaofeng, LIU Fangrui. Shortterm wind speed forecasting of wind farm based on SVM method [J]. Power System and Clean Energy, 2009, 25(7): 48-52.
[14] 李国勇. 智能控制及其MATLAB实现[M]. 北京: 电子工业出版社, 2005:20-28.
[15] 周明,孙树栋. 遗传算法原理与应用[M]. 北京:国防工业出版社, 1999:32-64.

 

No related articles found!