土木工程 |
|
|
|
|
基于语义分割的沥青路面裂缝智能识别 |
杨燕泽1( ),王萌1,*( ),刘诚2,徐慧通1,张小月1 |
1. 北京交通大学 土木建筑工程学院,北京 100044 2. 中路高科交通检测检验认证有限公司,北京 100088 |
|
Intelligent identification of asphalt pavement cracks based on semantic segmentation |
Yan-ze YANG1( ),Meng WANG1,*( ),Cheng LIU2,Hui-tong XU1,Xiao-yue ZHANG1 |
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China 2. China Road Transportation Verification and Inspection Hi-Tech Co Ltd., Beijing 100088, China |
引用本文:
杨燕泽,王萌,刘诚,徐慧通,张小月. 基于语义分割的沥青路面裂缝智能识别[J]. 浙江大学学报(工学版), 2023, 57(10): 2094-2105.
Yan-ze YANG,Meng WANG,Cheng LIU,Hui-tong XU,Xiao-yue ZHANG. Intelligent identification of asphalt pavement cracks based on semantic segmentation. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2094-2105.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.018
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2094
|
1 |
交通运输部 2020年全国收费公路统计公报[J]. 交通财会, 2021, (11): 93- 96 Ministry of Transport 2020 national toll road statistics bulletin[J]. Transportation Finance and Accounting, 2021, (11): 93- 96
|
2 |
徐鹏, 祝轩, 姚丁, 等 沥青路面养护智能检测与决策综述[J]. 中南大学学报: 自然科学版, 2021, 52 (7): 2099- 2117 XU Peng, ZHU Xuan, YAO Ding, et al Review on intelligent detection and decision-making of asphalt pavement maintenance[J]. Journal of Central South University: Science and Technology, 2021, 52 (7): 2099- 2117
|
3 |
马建, 赵祥模, 贺拴海, 等 路面检测技术综述[J]. 交通运输工程学报, 2017, 17 (5): 121- 137 MA Jian, ZHAO Xiang-mo, HE Shuan-hai, et al Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (5): 121- 137
doi: 10.3969/j.issn.1671-1637.2017.05.012
|
4 |
交通运输部公路研究院. 公路技术状况评定标准: JTG 5210-2018 [S]. 北京: 人民交通出版社, 2018: 17-21.
|
5 |
交通运输部公路研究院. 公路路面技术状况自动化检测规程: JTGT E61-2014 [S]. 北京: 人民交通出版社, 2014: 11-14.
|
6 |
黎蔚, 朱平哲 沥青路面裂缝图像检测算法研究[J]. 计算机工程与应用, 2012, 48 (19): 163- 166 LI Wei, ZHU Ping-zhe Image detection algorithm research for asphalt pavement crack[J]. Computer Engineering and Applications, 2012, 48 (19): 163- 166
doi: 10.3778/j.issn.1002-8331.2012.19.037
|
7 |
翁飘, 陆彦辉, 齐宪标, 等. 基于改进的全卷积神经网络的路面裂缝分割技术[J]. 计算机工程与应用, 2019, 55(16): 235-239. WENG Piao, LU Yan-hui, QI Xian-biao, et al. Pavement crack segmentation technology based on improved fully convolutional networks [J]. Computer Engineering and Applications. 2019, 55(16): 235-239.
|
8 |
赵颖. 基于卷积神经网络的沥青路面裂缝图像筛选与分割[D]. 石家庄: 石家庄铁道大学, 2021: 9-13. ZHAO Ying. Pavement crack segmentation technology based on improved fully convolutional networks [D]. Shijiazhuang: Shijiazhuang Railway University, 2021: 9-13.
|
9 |
唐由之. 基于卷积神经网络的沥青路面裂缝智能识别算法研究[D]. 成都: 西南交通大学, 2021: 13-22. TANG You-zhi. Research on intelligent cracks detection algorithm of asphalt pavement based on convolutional neural network [D]. Chengdu: Southwest Jiaotong University, 2021: 13-22.
|
10 |
HSIEH Y A, TSAI Y J Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2021, 34 (5): 04020038
|
11 |
田萱, 王亮, 丁琪 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30 (2): 440- 468 TIAN Xuan, WANG Liang, DING Qi Overview of image semantic segmentation methods based on deep learning[J]. Journal of Software, 2019, 30 (2): 440- 468
doi: 10.13328/j.cnki.jos.005659
|
12 |
李刚, 高振阳, 张新春, 等 改进的全局卷积网络在路面裂缝检测中的应用[J]. 激光与光电子学进展, 2020, 57 (8): 111- 119 LI Gang, GAO Zhen-yang, ZHANG Xin-chun, et al Application of improved global convolution network in pavement crack detection[J]. Progress in Laser and Optoelectronics, 2020, 57 (8): 111- 119
|
13 |
陈泽斌, 罗文婷, 李林. 基于改进U-net模型的路面裂缝智能识别[J]. 数据采集与处理. 2020, 35(2): 260-269. CHEN Ze-bin, LUO Wen-ting, LI Lin. Automatic identification of pavement crack using improved U-net model [J]. Journal of Data Acquisition and Processing, 2020, 35(2): 260-269.
|
14 |
阙云, 季雪, 蒋子平, 等. GAN数据增强下路面裂缝语义分割算法[EB/OL]. (2022-07-08) [2022-12-04]. http://doi.org/10.13229/j.cnki.jdxbgxb20220003. QUE Yun, JI Xue, JIANG Zi-ping, et al. Semantic segmentation algorithm of pavement cracks based on GAN data augmentation [EB/OL]. (2022-07-08)[2022-12-04]. http://doi.org/10.13229/j.cnki.jdxbgxb20220003.
|
15 |
ZHANG A, WANGK C P, FEI Y, et al Automated pixe mmevel pavement crack detection on 3D asphalt surfaces with a recurrent neural network[J]. Computer Aided Civil and Infrastruc Ture Engineering, 2018, 34 (3): 213- 229
|
16 |
XIANG X, ZHANG Y, SADDIK ABDULMOTALEB S Pavement crack detection network based on pyramid structure and attention mechanism[J]. IET Image Processing, 2020, 14 (8): 1580- 1586
doi: 10.1049/iet-ipr.2019.0973
|
17 |
YANG F, LEI Z, SIJIA Y, et al Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, (4): 1525- 1535
|
18 |
韩晓健, 赵志成 基于计算机视觉技术的结构表面裂缝检测方法研究[J]. 建筑结构学报, 2018, 39 (增1): 418- 427 HAN Xiao-jian, ZHAO Zhi-cheng Structural surface crack detection method based on computer vision technology[J]. Journal of Building Structures, 2018, 39 (增1): 418- 427
doi: 10.14006/j.jzjgxb.2018.S1.055
|
19 |
周颖, 刘彤 基于计算机视觉的混凝土裂缝识别[J]. 同济大学学报: 自然科学版, 2019, 47 (9): 1277- 1285 ZHOU Ying, LIU Tong Computer vision-based crack detection and measurement on concrete structure[J]. Journal of Tongji University: Natural Science, 2019, 47 (9): 1277- 1285
|
20 |
孟诗乔, 张啸天, 乔甦阳, 等 基于深度学习的网格优化裂缝检测模型研究[J]. 建筑结构学报, 2020, 41 (增2): 404- 410 MENG Shi-qiao, ZHAO Xiao-tian, QIAO Su-yang, et al Research on grid optimized crack detection model based on deep learning[J]. Journal of Building Structures, 2020, 41 (增2): 404- 410
doi: 10.14006/j.jzjgxb.2020.S2.0045
|
21 |
丁威, 俞珂, 舒江鹏 基于深度学习和无人机的混凝土结构裂缝检测方法[J]. 土木工程学报, 2021, 54 (增1): 1- 12 DING Wei, YU Ke, SHU Jiang-peng Method for detecting cracks in concrete structures based on deep learning and UAV[J]. Journal of Civil Engineering, 2021, 54 (增1): 1- 12
|
22 |
CSURKA G, PERRONNIN F An efficient approach to semantic segmentation[J]. International Journal of Computer Vision, 2011, 95 (2): 198- 212
doi: 10.1007/s11263-010-0344-8
|
23 |
EVERINGHAM M, ESLAMI S M, GOOL L V, et al The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136
doi: 10.1007/s11263-014-0733-5
|
24 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context [C]// Computer Vision–ECCV. Zürich: SIP, 2014: 740-755.
|
25 |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2039-2047.
|
26 |
EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? a systematic approach [C]// International Joint Conference on Neural Networks. Anchorage: IEEE, 2017: 2039−2047.
|
27 |
LEON B, FRANK E C, JORGE N Optimization methods for large-scale machine learning[J]. Siam Review, 2018, 60 (2): 223- 311
|
28 |
任凤雷, 何昕, 魏仲慧, 等 基于DeepLabV3+与超像素优化的语义分割[J]. 光学精密工程, 2019, 27 (12): 2722- 2729 REN Feng-lei, HE Xin, WEI Zhong-hui Semantic segmentation based on DeepLabV3+ and super pixel optimization[J]. Optics and Precision Engineering, 2019, 27 (12): 2722- 2729
|
29 |
于桐, 吴文瑾, 刘海江, 等 基于改进U-Net网络与联合损失函数的海南自然保护区高分辨率遥感变化检测模型[J]. 中国环境监测, 2021, 37 (5): 194- 200 YU Tong, WU Wen-jin, LIU Jiang-hai, et al Remote sensing change detection model of Hainan nature reserves based on improved U-Net and joint loss function[J]. Environmental Monitoring in China, 2021, 37 (5): 194- 200
|
30 |
LIN T Y, GOYAL P, GIRSHICK R, et al Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327
|
31 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770−778.
|
32 |
SANDLER M, HOCARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510−4520.
|
33 |
张晋赫, 秦育罗, 张在岩, 等 复杂场景下农村道路裂缝分割方法[J]. 测绘通报, 2022, 66 (5): 74- 78 ZHANG Jin-he, QIN Yu-luo, ZHANG Zai-yan, et al Rural road crack segmentation method in complex scene[J]. Bulletin of Surveying and Mapping, 2022, 66 (5): 74- 78
|
34 |
汪德佳. 基于计算机视觉方法的古建筑变形监测[D]. 北京: 北京交通大学, 2022: 67−68. Wang De-jia. Deformation monitoring of ancient buildings based on computer vision methods [D]. Beijing: Beijing Jiaotong University, 2022: 67−68.
|
35 |
刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京: 清华大学, 2015: 188−189. LIU Yu-fei. Multi-scale structural damage assessment based on model updating and image processing [D]. Beijing: Tsinghua University, 2015: 188−189.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|