计算机技术、自动化技术 |
|
|
|
|
用于遥感图像变化检测的深度监督网络 |
袁小平( ),王小倩,何祥,胡杨明 |
中国矿业大学 信息与控制工程学院,江苏 徐州 221116 |
|
Deep supervised network for change detection of remote sensing image |
Xiao-ping YUAN( ),Xiao-qian WANG,Xiang HE,Yang-ming HU |
School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China |
引用本文:
袁小平,王小倩,何祥,胡杨明. 用于遥感图像变化检测的深度监督网络[J]. 浙江大学学报(工学版), 2023, 57(10): 1966-1976.
Xiao-ping YUAN,Xiao-qian WANG,Xiang HE,Yang-ming HU. Deep supervised network for change detection of remote sensing image. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1966-1976.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.006
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1966
|
1 |
GAMBA P, DEll'ACQUA F, LISINI G Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (10): 2820- 2827
doi: 10.1109/TGRS.2006.879498
|
2 |
HUSSAIN M, CHEN D, CHENG A, et al Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91- 106
doi: 10.1016/j.isprsjprs.2013.03.006
|
3 |
CHEN J, CHEN J, LIAO A, et al Global land cover mapping at 30 m resolution: a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7- 27
doi: 10.1016/j.isprsjprs.2014.09.002
|
4 |
VOLPI M, TUIA D, BOVOLO F, et al Supervised change detection in VHR images using contextual information and support vector machines[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 77- 85
doi: 10.1016/j.jag.2011.10.013
|
5 |
FENG W, SUI H, TU J, et al A novel change detection approach based on visual saliency and random forest from multi-temporal high-resolution remote-sensing images[J]. International Journal of Remote Sensing, 2018, 39 (22): 7998- 8021
doi: 10.1080/01431161.2018.1479794
|
6 |
YAN J, WANG L, SONG W, et al A time-series classification approach based on change detection for rapid land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158: 249- 262
doi: 10.1016/j.isprsjprs.2019.10.003
|
7 |
GU W, LV Z, HAO M Change detection method for remote sensing images based on an improved Markov random field[J]. Multimedia Tools and Applications, 2017, 76 (17): 17719- 17734
doi: 10.1007/s11042-015-2960-3
|
8 |
DAUDT R C, LE S B, BOULCH A. Fully convolutional siamese networks for change detection [C]// 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 4063-4067.
|
9 |
PENG D, ZHANG Y, GUAN H End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11 (11): 1382
doi: 10.3390/rs11111382
|
10 |
PENG X, ZHONG R, LI Z, et al Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59 (9): 7296- 7307
|
11 |
CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005, 1: 539-546.
|
12 |
ZHANG X, YUE Y, GAO W, et al. DifUnet++: a satellite images change detection network based on Unet++ and differential pyramid [EB/OL]. [2021-01-22]. http://dx.chinadoi.cn/10.1109/LGRS.2021.3049370.
|
13 |
郭海涛, 卢俊, 袁洲, 等 Siam-DeepLabv3+网络遥感影像语义变化检测方法[J]. 测绘科学技术学报, 2021, 38 (6): 597- 603 GUO Hai-tao, LU Jun, YUAN Zhou, et al Semantic change detection method for remote sensing images with Siam-DeepLabv3+ network[J]. Journal of Surveying and Mapping Science and Technology, 2021, 38 (6): 597- 603
doi: 10.3969/j.issn.1673-6338.2021.06.008
|
14 |
FANG S, LI K, SHAO J, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[EB/OL]. [2021-02-17]. http://dx.chinadoi.cn/10.1109/LGRS.2021.3056416.
|
15 |
DONG J, ZHAO W, WANG S. Multiscale context aggregation network for building change detection using high resolution remote sensing images [EB/OL]. [2021-10-18]. https://ieeexplore.ieee.org/document/9578997.
|
16 |
SHI Q, LIU M, LI S, et al A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 16
|
17 |
AFAQ Y, MANOCHA A Analysis on change detection techniques for remote sensing applications: a review[J]. Ecological Informatics, 2021, 63: 101310
doi: 10.1016/j.ecoinf.2021.101310
|
18 |
LIU Y, SHAO Z, TENG Y, et al. Nam: normalization-based attention module [EB/OL]. [2021-11-25]. https://arxiv.org/abs/2111.12419.
|
19 |
CHEN J, YUAN Z, PENG J, et al DASNet: dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1194- 1206
|
20 |
ZHANG C, YUE P, TAPETE D, et al A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183- 200
doi: 10.1016/j.isprsjprs.2020.06.003
|
21 |
MOLCHANOV P, TYREE S, KARRAS T, et al. Pruning convolutional neural networks for resource efficient inference [EB/OL]. [2022-04-29]. https://arxiv.org/abs/1611.06440.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|