Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2042-2050    DOI: 10.3785/j.issn.1008-973X.2023.10.013
机械工程、能源工程     
基于EtherCAT总线的六维力传感器在线解耦技术
查浩1(),费少华2,傅云3,吕震4,朱伟东2,*()
1. 浙江大学 工程师学院,浙江 杭州 310015
2. 浙江大学 机械工程学院,浙江 杭州 310027
3. 浙江西子势必锐航空工业有限公司,浙江 杭州 311228
4. 浙大城市学院,浙江 杭州 310015
Online decoupling technology of six-dimensional force sensor based on EtherCAT bus
Hao ZHA1(),Shao-hua FEI2,Yun FU3,Zhen LV4,Wei-dong ZHU2,*()
1. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Xizi Spirit Aviation Industry Ltd., Hangzhou 311228, China
4. Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1510 KB)   HTML
摘要:

为了克服传统六维力传感器数据采集模块体积大、精度低、缺乏数据处理功能的弊端,设计了一种体积小、精度高、实时性高、采集速度快、采集处理一体化的基于EtherCAT总线的六维力传感器数据采集模块. 为了减小六维力传感器的维间耦合,开发了遗传算法优化的神经网络来对实验数据进行离线训练. 利用多重随机操作来提高算法的泛化性能,并将训练好的参数移植到微控制器中进行在线解耦. 通过单维和六维力传感器加载实验,表明模块可在1 ms之内完成数据的采集及处理;解耦后相对误差在0.85%以下,相对于最小二乘法解耦矩阵计算得到的精度提高了37.1%.

关键词: EtherCAT六维力传感器遗传算法神经网络在线解耦    
Abstract:

A six-dimensional force sensor data acquisition module based on EtherCAT bus was designed, overcoming the drawbacks of traditional modules, like large size, low accuracy, and absence of data processing. The module had small size, high precision, high real-time, fast acquisition speed and integration of acquisition and processing. A neural network optimized by genetic algorithm, was developed for offline training of experimental data, so as to decrease the inter-dimensional coupling of six-dimensional force sensor. Multiple randomization was used to enhance the generalization performance of the algorithm, and the trained parameters were transplanted to the microcontroller for the online decoupling. Through single-dimensional and six-dimensional force sensor loading experiments, the result indicated that the data acquisition and processing could be achieved by module within 1 ms. Relative error was less than 0.85% after decoupling, the accuracy improved by 37.1% compared to the least squares decoupling matrix calculation.

Key words: EtherCAT    six-dimensional force sensor    genetic algorithm    neural network    online decoupling
收稿日期: 2022-12-20 出版日期: 2023-10-18
CLC:  TP 212.6  
基金资助: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2022C01134)
通讯作者: 朱伟东     E-mail: zhahao@zju.edu.cn;wdzhu@zju.edu.cn
作者简介: 查浩(1997—),男,硕士生,从事自动化装配技术及系统研究. orcid.org/0000-0001-8191-2391. E-mail: zhahao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
查浩
费少华
傅云
吕震
朱伟东

引用本文:

查浩,费少华,傅云,吕震,朱伟东. 基于EtherCAT总线的六维力传感器在线解耦技术[J]. 浙江大学学报(工学版), 2023, 57(10): 2042-2050.

Hao ZHA,Shao-hua FEI,Yun FU,Zhen LV,Wei-dong ZHU. Online decoupling technology of six-dimensional force sensor based on EtherCAT bus. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2042-2050.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2042

图 1  六维力传感器的内部结构图
图 2  六维力传感器数据采集模块的硬件组成图
图 3  从站的原理框图
图 4  六维力传感器数据采集模块的程序初始化流程图
图 5  过程数据对象的分配与映射
图 6  过程数据的采集流程
图 7  神经网络的结构图
图 8  遗传算法优化的神经网络算法
图 9  在线解耦的流程图
图 10  六维力传感器数据采集实验的现场图
通道 相对误差/% 通道 相对误差/%
Fx 0.083 5 Mx 0.135 6
Fy 0.225 7 My 0.191 1
Fz 0.135 6 Mz 0.128 4
表 1  单维加载实验的数据相对误差
通道 相对误差/% 通道 相对误差/%
Fx 0.364 7 Mx 0.312 6
Fy 0.364 7 My 0.416 8
Fz 0.416 8 Mz 0.312 6
表 2  单维加载实验的数据波动特性
图 11  单维加载实验的线性度特性图
图 12  六维力传感器的六维加载实验
图 13  六维加载实验预测力的相对误差图
通道 相对误差/% 通道 相对误差/%
Fx 1.150 2 Mx 1.028 5
Fy 1.350 8 My 0.949 1
Fz 1.294 0 Mz 1.270 6
表 3  最小二乘法解耦矩阵的计算误差
1 LIANG Q K, ZHANG D, SONG Q J, et al Design and fabrication of a six-dimensional wrist force/torque sensor based on E-type membranes compared to cross beams[J]. Measurement, 2010, 43 (10): 1702- 1719
doi: 10.1016/j.measurement.2010.09.010
2 YUAN C, LUO L P, YUAN Q, et al Development and evaluation of a compact 6-axis force/moment sensor with a serial structure for the humanoid robot foot[J]. Measurement, 2015, 70: 110- 122
doi: 10.1016/j.measurement.2015.03.027
3 ZHAO Y Z, ZHANG C F, ZHANG D, et al Mathematical model and calibration experiment of a large measurement range flexible joints 6-UPUR six-axis force sensor[J]. Sensors, 2016, 16 (8): 1271- 1290
doi: 10.3390/s16081271
4 LEE D H, KIM U, JUNG H, et al A capacitive-type novel six-axis force/torque sensor for robotic applications[J]. IEEE Sensors Journal, 2016, 16 (8): 2290- 2299
doi: 10.1109/JSEN.2015.2504267
5 张晨 多维力传感器的研究现状分析[J]. 北方工业大学学报, 2017, 29 (2): 86- 94
ZHANG Chen Analysis of the research status of multi-dimensional force sensor[J]. Journal of North China University of Technology, 2017, 29 (2): 86- 94
doi: 10.3969/j.issn.1001-5477.2017.02.014
6 MA J Q, SONG A G, XIAO J A robust static decoupling algorithm for 3-axis force sensors based on coupling error model and ε-SVR[J]. Sensors, 2012, 12 (11): 14537- 14555
doi: 10.3390/s121114537
7 KANG M K, LEE S, KIM J H Shape optimization of a mechanically decoupled six-axis force/torque sensor[J]. Sensors and Actuators A: Physical, 2014, 209: 41- 51
doi: 10.1016/j.sna.2014.01.001
8 AKBARI H, KAZEROONI A Improving the coupling errors of a Maltese cross-beams type six-axis force/moment sensor using numerical shape-optimization technique[J]. Measurement, 2018, 126: 342- 355
doi: 10.1016/j.measurement.2018.05.074
9 ZHOU S L, SUN J, CHEN W X, et al Method of designing a six-axis force sensor for stiffness decoupling based on Stewart platform[J]. Measurement, 2019, 148: 106966
doi: 10.1016/j.measurement.2019.106966
10 HAMED A, MASOULEH M T, KALHOR A Design and characterization of a bio-inspired 3-DOF tactile/force sensor and implementation on a 3-DOF decoupled parallel mechanism for human-robot interaction purposes[J]. Mechatronics, 2020, 66: 102325
doi: 10.1016/j.mechatronics.2020.102325
11 LIANG Q K, WU W N, COPPOLA G, et al Calibration and decoupling of multi-axis robotic force/moment sensors[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 301- 308
doi: 10.1016/j.rcim.2017.08.008
12 徐家琪, 伍万能, 孙炜, 等 优化极限学习机算法及其在力信息解耦中的应用[J]. 传感技术学报, 2019, 32 (10): 1487- 1492
XU Jia-qi, WU Wan-neng, SUN Wei, et al An optimal extreme learning machine algorithm and its application in force information decoupling[J]. Journal of Sensor Technology, 2019, 32 (10): 1487- 1492
13 LIANG Q K, LONG J Y, COPPOLA G, et al Novel decoupling algorithm based on parallel voltage extreme learning machine (PV-ELM) for six-axis F/M sensors[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 303- 314
doi: 10.1016/j.rcim.2018.12.014
14 MA Y K, XIE S L, ZHANG X N, et al Hybrid calibration method for six-component force/torque transducers of wind tunnel balance based on support vector machines[J]. Chinese Journal of Aeronautics, 2013, 26 (3): 554- 562
doi: 10.1016/j.cja.2013.04.056
15 LI Y J, WANG G C, YANG X, et al Research on static decoupling algorithm for piezoelectric six axis force/torque sensor based on LSSVR fusion algorithm[J]. Mechanical Systems and Signal Processing, 2018, 110: 509- 520
doi: 10.1016/j.ymssp.2018.03.015
16 茅晨, 高翔, 徐国政, 等 基于MSVR的六维腕力传感器静态解耦算法[J]. 数据采集与处理, 2019, 34 (4): 736- 743
MAO Chen, GAO Xiang, XU Guo-zheng, et al Static decoupling algorithm of six dimensional wrist force sensor based on MSVR[J]. Journal of Data Acquisition and Processing, 2019, 34 (4): 736- 743
doi: 10.16337/j.1004-9037.2019.04.019
17 CHEN D F, SONG A G, LI A Design and calibration of a six-axis force/torque sensor with large measurement range used for the space manipulator[J]. Procedia Engineering, 2015, 99: 1164- 1170
doi: 10.1016/j.proeng.2014.12.699
18 ZHOU J X, LI Z, SONG D L, et al PID neural network decoupling control based on improved particle swarm optimization[J]. Machine Tool Hydraulics, 2018, 46 (24): 74- 79
19 LI Y J, WANG G C, HAN B B, et al Research on nonlinear decoupling method of piezoelectric six-dimensional force sensor based on BP neural network[J]. IOP Conference Series: Materials Science and Engineering, 2018, 428 (1): 1- 6
20 LI Y J, XU X S, WANG G C, et al Fault-tolerant measurement mechanism research on pre-tightened four-point supported piezoelectric six-dimensional force/torque sensor[J]. Mechanical Systems and Signal Processing, 2020, 135: 106420
doi: 10.1016/j.ymssp.2019.106420
21 WU X P, XIE L H Performance evaluation of industrial Ethernet protocols for networked control application[J]. Control Engineering Practice, 2019, 84: 208- 217
doi: 10.1016/j.conengprac.2018.11.022
22 WANG C H, ZHENG L M, LI B B, et al Design and implementation of EtherCAT master based on Loongson[J]. Procedia Computer Science, 2021, 183: 462- 470
doi: 10.1016/j.procs.2021.02.085
23 HE S Y, HUANG L S, CHEN X J, et al Remote monitoring system for ITER PF converter system based on EtherCAT[J]. Fusion Engineering and Design, 2021, 164: 112182
doi: 10.1016/j.fusengdes.2020.112182
24 HU X, HUAN J, LIU Y Q Motion control system using SERCOS over EtherCAT[J]. Procedia Engineering, 2011, 24: 749- 753
doi: 10.1016/j.proeng.2011.11.2730
[1] 汤雪扬,蔡小培,王伟华,常文浩,王启好. 基于粒子概率神经网络算法的钢轨波磨识别[J]. 浙江大学学报(工学版), 2023, 57(9): 1766-1774.
[2] 宋昭漾,赵小强,惠永永,蒋红梅. 基于多级连续编码与解码的图像超分辨率重建算法[J]. 浙江大学学报(工学版), 2023, 57(9): 1885-1893.
[3] 王殿海,谢瑞,蔡正义. 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1607-1617.
[4] 宋秀兰,董兆航,单杭冠,陆炜杰. 基于时空融合的多头注意力车辆轨迹预测[J]. 浙江大学学报(工学版), 2023, 57(8): 1636-1643.
[5] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[6] 周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
[7] 张海波,蔡磊,任俊平,王汝言,刘富. 基于Transformer的高效自适应语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(6): 1205-1214.
[8] 覃承进,蒋俊正. 基于深度神经网络的雷达距离超分辨方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1215-1223.
[9] 周传华,操礼春,周家亿,詹凤. 图卷积融合计算时效网络节点重要性评估分析[J]. 浙江大学学报(工学版), 2023, 57(5): 930-938.
[10] 熊帆,陈田,卞佰成,刘军. 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报(工学版), 2023, 57(5): 948-956.
[11] 王誉翔,钟智伟,夏鹏程,黄亦翔,刘成良. 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报(工学版), 2023, 57(5): 855-864.
[12] 吕鑫栋,李娇,邓真楠,冯浩,崔欣桐,邓红霞. 基于改进Transformer的结构化图像超分辨网络[J]. 浙江大学学报(工学版), 2023, 57(5): 865-874.
[13] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.
[14] 张超凡,乔一铭,曹露,王志刚,崔少伟,王硕. 基于神经形态的触觉滑动感知方法[J]. 浙江大学学报(工学版), 2023, 57(4): 683-692.
[15] 徐少铭,李钰,袁晴龙. 基于强化学习和3σ准则的组合剪枝方法[J]. 浙江大学学报(工学版), 2023, 57(3): 486-494.