Most Downloaded Articles

Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month| Most Downloaded in Recent Year|

Most Downloaded in Recent Month
Please wait a minute...
Survey of deep learning based EEG data analysis technology
Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG
Journal of ZheJiang University (Engineering Science)    2024, 58 (5): 879-890.   DOI: 10.3785/j.issn.1008-973X.2024.05.001
Abstract   HTML PDF (690KB) ( 3027 )  

A thorough analysis and cross-comparison of recent relevant works was provided, outlining a closed-loop process for EEG data analysis based on deep learning. EEG data were introduced, and the application of deep learning in three key stages: preprocessing, feature extraction, and model generalization was unfolded. The research ideas and solutions provided by deep learning algorithms in the respective stages were delineated, including the challenges and issues encountered at each stage. The main contributions and limitations of different algorithms were comprehensively summarized. The challenges faced and future directions of deep learning technology in handling EEG data at each stage were discussed.

Table and Figures | Reference | Related Articles | Metrics
Research overview on touchdown detection methods for footed robots
Xiaoyong JIANG,Kaijian YING,Qiwei WU,Xuan WEI
Journal of ZheJiang University (Engineering Science)    2024, 58 (2): 334-348.   DOI: 10.3785/j.issn.1008-973X.2024.02.012
Abstract   HTML PDF (1751KB) ( 1173 )  

The effects of leg structure design, foot-end design and sensor design on touchdown detection were comprehensively discussed by analyzing the existing legged robot touchdown detection methods. The touchdown method for direct detection of external sensors, the touchdown detection method based on kinematics and dynamics, and the touchdown detection method based on learning were summarized. Touchdown detection methods were summarized in three special scenarios: slippery ground, soft ground, and non-foot-end contact. The application scenarios of touchdown detection technology were analyzed, including the three application scenarios of motion control requirements, navigation applications, and terrain and geological sensing. The development trends were pointed out, which related to the four major touchdown detection methods of hardware improvement and integration, multi-mode touchdown detection, multi-sensor fusion touchdown detection, and intelligent touchdown detection. The specific relationships between various touchdown detection algorithms were summarized, which provided guidance for the development of follow-up technology for touchdown detection and specific applications of touchdown detection.

Table and Figures | Reference | Related Articles | Metrics
Review of Chinese font style transfer research based on deep learning
Ruo-ran CHENG,Xiao-li ZHAO,Hao-jun ZHOU,Han-chen YE
Journal of ZheJiang University (Engineering Science)    2022, 56 (3): 510-519, 530.   DOI: 10.3785/j.issn.1008-973X.2022.03.010
Abstract   HTML PDF (874KB) ( 1060 )  

The research works of Chinese font style transfer were classified according to different stages of research development. The traditional methods were briefly reviewed and the deep learning-based methods were combed and analyzed. The commonly used open data sets and evaluation criteria were introduced. The future research trends were expected from four aspects, which were to improve the generation quality, enhance personalized differences, reduce the number of training samples, and learn calligraphy font style.

Table and Figures | Reference | Related Articles | Metrics
Surface defect detection algorithm of electronic components based on improved YOLOv5
Yao ZENG,Fa-qin GAO
Journal of ZheJiang University (Engineering Science)    2023, 57 (3): 455-465.   DOI: 10.3785/j.issn.1008-973X.2023.03.003
Abstract   HTML PDF (1697KB) ( 1186 )  

For the poor real-time detection capability of the current object detection model in the production environment of electronic components, GhostNet was used to replace the backbone network of YOLOv5. And for the existence of small objects and objects with large scale changes on the surface defects of electronic components, a coordinate attention module was added to the YOLOv5 backbone network, which enhanced the sensory field while avoiding the consumption of large computational resources. The coordinate information was embedded into the channel attention to improve the object localization of the model. The feature pyramid networks (FPN) structure in the YOLOv5 feature fusion module was replaced with a weighted bi-directional feature pyramid network structure, to enhance the fusion capability of multi-scale weighted features. Experimental results on the self-made defective electronic component dataset showed that the improved GCB-YOLOv5 model achieved an average accuracy of 93% and an average detection time of 33.2 ms, which improved the average accuracy by 15.0% and the average time by 7 ms compared with the original YOLOv5 model. And the improved model can meet the requirements of both accuracy and speed of electronic component surface defect detection.

Table and Figures | Reference | Related Articles | Metrics
Driver fatigue state detection method based on multi-feature fusion
Hao-jie FANG,Hong-zhao DONG,Shao-xuan LIN,Jian-yu LUO,Yong FANG
Journal of ZheJiang University (Engineering Science)    2023, 57 (7): 1287-1296.   DOI: 10.3785/j.issn.1008-973X.2023.07.003
Abstract   HTML PDF (1481KB) ( 1091 )  

The improved YOLOv5 object detection algorithm was used to detect the facial region of the driver and a multi-feature fusion fatigue state detection method was established aiming at the problem that existing fatigue state detection method cannot be applied to drivers under the epidemic prevention and control. The image tag data including the situation of wearing a mask and the situation without wearing a mask were established according to the characteristics of bus driving. The detection accuracy of eyes, mouth and face regions was improved by increasing the feature sampling times of YOLOv5 model. The BiFPN network structure was used to retain multi-scale feature information, which makes the prediction network more sensitive to targets of different sizes and improves the detection ability of the overall model. A parameter compensation mechanism was proposed combined with face keypoint algorithm in order to improve the accuracy of blink and yawn frame number. A variety of fatigue parameters were fused and normalized to conduct fatigue classification. The results of the public dataset NTHU and the self-made dataset show that the proposed method can recognize the blink and yawn of drivers both with and without masks, and can accurately judge the fatigue state of drivers.

Table and Figures | Reference | Related Articles | Metrics
Spatial-temporal multi-graph convolution for traffic flow prediction by integrating knowledge graphs
Jinye LI,Yongqiang LI
Journal of ZheJiang University (Engineering Science)    2024, 58 (7): 1366-1376.   DOI: 10.3785/j.issn.1008-973X.2024.07.006
Abstract   HTML PDF (1616KB) ( 467 )  

A spatial-temporal multi-graph convolution traffic flow prediction model by integrating static and dynamic knowledge graphs was proposed, as current traffic flow prediction methods focus on the spatial-temporal correlation of traffic information and fail to fully take into account the influence of external factors on traffic. An urban traffic knowledge graph and four road network topological graphs with distinct semantics were systematically constructed, drawing upon the road traffic information and the external factors. The urban traffic knowledge graph was inputted into the relational evolution graph convolutional neural network to realize the knowledge embedding. The traffic flow matrix and the knowledge embedding were integrated using the knowledge fusion module. The four road network topology graphs and the traffic flow matrix with fused knowledge were fed into the spatial-temporal multi-graph convolution module to extract spatiotemporal features, and the traffic flow prediction value was outputted through the fully connected layer. The model performance was evaluated on a Hangzhou traffic data set. Compared with the advanced baseline, the performance of the proposed model improved by 5.76%-10.71%. Robustness experiment results show that the proposed model has a strong ability to resist interference.

Table and Figures | Reference | Related Articles | Metrics
Multimodal sentiment analysis model based on multi-task learning and stacked cross-modal Transformer
Qiao-hong CHEN,Jia-jin SUN,Yang-bo LOU,Zhi-jian FANG
Journal of ZheJiang University (Engineering Science)    2023, 57 (12): 2421-2429.   DOI: 10.3785/j.issn.1008-973X.2023.12.009
Abstract   HTML PDF (1171KB) ( 847 )  

A new multimodal sentiment analysis model (MTSA) was proposed on the basis of cross-modal Transformer, aiming at the difficult retention of the modal feature heterogeneity for single-modal feature extraction and feature redundancy for cross-modal feature fusion. Long short-term memory (LSTM) and multi-task learning framework were used to extract single-modal contextual semantic information, the noise was removed and the modal feature heterogeneity was preserved by adding up auxiliary modal task losses. Multi-tasking gating mechanism was used to adjust cross-modal feature fusion. Text, audio and visual modal features were fused in a stacked cross-modal Transformer structure to improve fusion depth and avoid feature redundancy. MTSA was evaluated in the MOSEI and SIMS data sets, results show that compared with other advanced models, MTSA has better overall performance, the accuracy of binary classification reached 83.51% and 84.18% respectively.

Table and Figures | Reference | Related Articles | Metrics
Multi-target tracking of vehicles based on optimized DeepSort
Li-sheng JIN,Qiang HUA,Bai-cang GUO,Xian-yi XIE,Fu-gang YAN,Bo-tao WU
Journal of ZheJiang University (Engineering Science)    2021, 55 (6): 1056-1064.   DOI: 10.3785/j.issn.1008.973X.2021.06.005
Abstract   HTML PDF (1014KB) ( 1510 )  

A front multi-vehicle target tracking algorithm optimized by DeepSort was proposed in order to improve the awareness of autonomous vehicles to the surrounding environment. Gaussian YOLO v3 model was adopted as the front-end target detector, and training was based on DarkNet-53 backbone network. Gaussian YOLO v3-Vehicle, a detector specially designed for vehicles was obtained, which improved the vehicle detection accuracy by 3%. The augmented VeRi data set was proposed to conduct the re-recognition pre-training in order to overcome the shortcomings that the traditional pre-training model doesn't target vehicles. A new loss function combining the central loss function and the cross entropy loss function was proposed, which can make the target features extracted by the network become better in-class aggregation and inter-class resolution. Actual road videos in different environments were collected in the test part, and CLEAR MOT evaluation index was used for performance evaluation. Results showed a 1% increase in tracking accuracy and a 4% reduction in identity switching times compared with the benchmark DeepSort YOLO v3.

Table and Figures | Reference | Related Articles | Metrics
Review of CO2 direct air capture adsorbents
Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG
Journal of ZheJiang University (Engineering Science)    2022, 56 (3): 462-475.   DOI: 10.3785/j.issn.1008-973X.2022.03.005
Abstract   HTML PDF (1561KB) ( 1526 )  

The research progress of direct air capture CO2 adsorbents was reviewed. The advantages and disadvantages of alkali/alkaline metal based adsorbents, metal organic framework adsorbents, amine loaded adsorbents and moisture swing adsorbents were compared. Meanwhile, the properties of adsorbents from the aspects of adsorption capacity and amine efficiency, kinetics and supporters, regeneration mode and energy consumption, thermal stability and resistance to degradation were evaluated. Additionally, the related engineering demonstration projects and economic evaluation were briefly discussed. Finally, the problems existing in the current research were summarized, and the future research direction was prospected.

Table and Figures | Reference | Related Articles | Metrics
Fall detection algorithms based on wearable device: a review
HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)    2018, 52 (9): 1717-1728.   DOI: 10.3785/j.issn.1008-973X.2018.09.012
Abstract   PDF (920KB) ( 1004 )  

Fall detection methods based on wearable inertial devices were elaborated from 2013 to 2018. First of all, the definition of fall, conventional phases contained within a fall, classification and categories of falls were fully introduced. Secondly, current research works were introduced with respect to modules such as data collection, preprocessing, feature extraction and model construction of the wearable fall detection system framework. A series of widely-used technical criteria were induced for evaluating the performance of fall detection methods. At last, nine public fall detection datasets were described, as well as the predictive performance based on those datasets, which is helpful for future research in fall detection research area.

Reference | Related Articles | Metrics
Multi-behavior aware service recommendation based on hypergraph graph convolution neural network
Jia-wei LU,Duan-ni LI,Ce-ce WANG,Jun XU,Gang XIAO
Journal of ZheJiang University (Engineering Science)    2023, 57 (10): 1977-1986.   DOI: 10.3785/j.issn.1008-973X.2023.10.007
Abstract   HTML PDF (1380KB) ( 765 )  

A multi-behavior aware service recommendation method based on hypergraph graph convolutional neural network (MBSRHGNN) was proposed to resolve the problem of insufficient high-order service feature extraction in existing service recommendation methods. A multi-hypergraph was constructed according to user-service interaction types and service mashups. A dual-channel hypergraph convolutional network was designed based on the spectral decomposition theory with functional and structural properties of multi-hypergraph. Chebyshev polynomial was used to approximate hypergraph convolution kernel to reduce computational complexity. Self-attention mechanism and multi-behavior recommendation methods were combined to measure the importance difference between multi-behavior interactions during the hypergraph convolution process. A hypergraph pooling method named HG-DiffPool was proposed to reduce the feature dimensionality. The probability distribution for recommending different services was learned by integrating service embedding vector and hypergraph signals. Real service data was obtained by the crawler and used to construct datasets with different sparsity for experiments. Experimental results showed that the MBSRHGNN method could adapt to recommendation scenario with highly sparse data, and was superior to the existing baseline methods in accuracy and relevance.

Table and Figures | Reference | Related Articles | Metrics
Uncertain behavior sequence prediction method based on intent identification
Fei HE,Cang-hong JIN,Ming-hui WU
Journal of ZheJiang University (Engineering Science)    2022, 56 (2): 254-262.   DOI: 10.3785/j.issn.1008-973X.2022.02.005
Abstract   HTML PDF (1039KB) ( 629 )  

An graph based intent identification embedding (G2IE) method was proposed, in order to solve the problems of behavior uncertainty and data sparsity faced by collaborative recommendation and sequence representation methods in user behavior prediction. In G2IE method, firstly the theory of planned behavior (TPB) is used to mine the controlled behavior patterns in the user behavior sequence, then the transfer intention intensity of the uncertain behavior list between adjacent controlled behaviors is calculated based on information entropy, and finally the behavior relationship is strengthened by integrating the behavior transfer intention to make up for the lack of behavior intention. In G2IE method, the uncertainty of behavior is identified and it is measured with a model, in order to solve the problem of behavior randomness. The problem of data sparsity can be alleviated to some extent by discovering more behavior relationships through the fusion of transfer intention. G2IE method has more accurate and rich expression ability compared with other methods that use behavior direct relation. Experimental results on three public user behavior datasets demonstrate the effectiveness of the proposed method.

Table and Figures | Reference | Related Articles | Metrics
Pavement distress situation prediction method based on graph neural network
Zechao MA,Xiaoming LIU,Hanqing XIA,Weiqiang WANG,Jiuzeng WANG,Haitao SHEN
Journal of ZheJiang University (Engineering Science)    2024, 58 (12): 2596-2608.   DOI: 10.3785/j.issn.1008-973X.2024.12.019
Abstract   HTML PDF (1111KB) ( 324 )  

A road pavement distress situation forecasting method employing graph convolutional networks was introduced, addressing the prediction problem of road pavement distress generation and deterioration. Firstly, a topological network was established through clustering algorithms, selecting the main influencing factors of the target pavement distress during its evolution. Subsequently, to enhance the expressive capability of the graph neural network for distress information, a graph topology enhancement method was employed, constructing views related to distress information from both static and dynamic aspects. Finally, an enhanced graph neural network (GNN) architecture was applied, by incorporating attention mechanisms in the view dimension to adjust the influence of different views and utilizing Transformer and GRU modules in the temporal dimension to enhance the predictive performance of the model for pavement distress states over extended time sequences. The internal calibration tests of the model, including ablation studies, multi-sample testing, and hyperparameter control group validation, demonstrated the applicability and stability of the proposed model. For the large and sparse pavement disease dataset, the mean absolute error of this model converged within 4.0, which was better than the results of the traditional prediction algorithms in terms of comprehensive performance.

Table and Figures | Reference | Related Articles | Metrics
Research progress of porous materials with low dielectric constant
WANG Jia-Bang, ZHANG Guo-Quan
J4    2009, 43 (5): 957-961.   DOI: 10.3785/j.issn.1008-973X.2009.05.033
Abstract   PDF (699KB) ( 2045 )  

The porous materials with low dielectric constant are suitable for the applications in integrated circuits. From the aspects of composition and structure, preparation method and dielectric properties, this work introduced the porous low-dielectric-constant materials with different matrix such as inorganic materials, organic materials, inorganic and organic composite separately, whose dielectric constants can be reduced to 1.99, 1.50, 1.99, respectively. The using temperature of the porous low-dielectric-constant materials with organic matrix can reach 450 ℃. The flexural strength of the porous low-dielectric-constant materials with inorganic matrix can reach 136 MPa. The introduction of cave into the materials leads to the decrease of mechanical properties and the increase of dielectric loss. The effort to get a low-dielectric-constant and improve the above properties can broaden the application scope of the porous materials.

Reference | Related Articles | Metrics
Vehicle multimodal trajectory prediction model based on spatio-temporal graph attention network
Wenqiang CHEN,Dongdan WANG,Wenying ZHU,Yongjie WANG,Tao WANG
Journal of ZheJiang University (Engineering Science)    2025, 59 (3): 443-450.   DOI: 10.3785/j.issn.1008-973X.2025.03.001
Abstract   HTML PDF (1204KB) ( 200 )  

A spatio-temporal graph attention network for vehicle multimodal trajectory prediction (STGAMT) was proposed to address the challenges of predicting manually-driven vehicle trajectories and investigating their impact on autonomous driving decisions. The temporal and spatial characteristics were modeled based on the historical information about the vehicle. A two-dimensional convolutional neural network was employed to identify transverse and longitudinal lane change states, which were then combined with the output from the spatio-temporal dynamic interaction module to form transverse and longitudinal motion characteristics. The Softmax function was used to determine the vehicle’s driving intention. The multi-mode trajectory output was achieved by using a GRU network based on Gaussian conditional distribution. Experimental results showed that, in short-term predictions, the STGAMT model reduced the average error by 63.8% and 41.0% compared to the other five classic models on HighD and NGSIM datasets, respectively. In long-term predictions, the STGAMT model reduced the RMSE by 62.5% and 19.1% compared to the average RMSE of the other five classic models on HighD and NGSIM datasets, respectively. Results indicated that the STGAMT model could effectively improve the accuracy of manually-driven vehicle trajectory prediction.

Table and Figures | Reference | Related Articles | Metrics
Three-dimensional sector automatic design based on improved NSGA-II algorithm
Yingfei ZHANG,Xiaobing HU,Hang ZHOU,Xuzeng FENG
Journal of ZheJiang University (Engineering Science)    2025, 59 (2): 413-422.   DOI: 10.3785/j.issn.1008-973X.2025.02.019
Abstract   HTML PDF (1634KB) ( 279 )  

An improved non-dominated sorting genetic algorithm II (NSGA-II) was proposed in order to address the challenges of time-consuming manual airspace sectorization and the difficulty in comparing the quality of different sectorization schemes. A three-dimensional multi-objective optimization model for sectorization was established by using a grid-region-sector hierarchy in order to balance controllers’ workload within sectors and reduce workload differences between sectors. A fitness evaluation operator, a probability-adaptive combination crossover operator and a dynamic mutation operator were incorporated in the NSGA-II algorithm in order to enhance the number of feasible solutions, solution diversity and computational efficiency. A simulation was conducted for the automatic 3D sectorization of Xi'an high-altitude airspace. Results showed that the optimized scheme improved workload balance within sectors by 37% and reduced inter-sector workload by 24% compared with the current sectorization configuration. The proposed improved NSGA-II provided a broader range of options for decision-makers with varying preferences compared with traditional weighted multi-objective optimization algorithms.

Table and Figures | Reference | Related Articles | Metrics
Survey on program representation learning
Jun-chi MA,Xiao-xin DI,Zong-tao DUAN,Lei TANG
Journal of ZheJiang University (Engineering Science)    2023, 57 (1): 155-169.   DOI: 10.3785/j.issn.1008-973X.2023.01.016
Abstract   HTML PDF (1100KB) ( 866 )  

There has been a trend of intelligent development using artificial intelligence technology in order to improve the efficiency of software development. It is important to understand program semantics to support intelligent development. A series of research work on program representation learning has emerged to solve the problem. Program representation learning can automatically learn useful features from programs and represent the features as low-dimensional dense vectors in order to efficiently extract program semantic and apply it to corresponding downstream tasks. A comprehensive review to categorize and analyze existing research work of program representation learning was provided. The mainstream models for program representation learning were introduced, including the frameworks based on graph structure and token sequence. Then the applications of program representation learning technology in defect detection, defect localization, code completion and other tasks were described. The common toolsets and benchmarks for program representation learning were summarized. The challenges for program representation learning in the future were analyzed.

Table and Figures | Reference | Related Articles | Metrics
Review of underground pipeline monitoring research based on distributed fiber optic sensing
Hai-ying WU,Hong-hu ZHU,Bao ZHU,He QI
Journal of ZheJiang University (Engineering Science)    2019, 53 (6): 1057-1070.   DOI: 10.3785/j.issn.1008-973X.2019.06.005
Abstract   HTML PDF (1057KB) ( 1562 )  

Outline the important role of underground pipelines in national economy and defense construction, as well as the possible serious consequences of pipeline failure. Point out that the real-time monitoring of underground pipelines by using distributed fiber optic sensing (DFOS) technology can guarantee the structural health and safe operation of pipelines. Introduce the pipeline monitoring principle based on DFOS technology, and the research progress of DFOS technology in pipeline leakage monitoring, third party intrusion monitoring, deformation monitoring, corrosion monitoring, geological and natural disaster monitoring and submarine pipeline monitoring. Analyze some existing problems and hot topics in the current research, as well as the future research trend.

Table and Figures | Reference | Related Articles | Metrics
Survey of multi-objective particle swarm optimization algorithms and their applications
Qianlin YE,Wanliang WANG,Zheng WANG
Journal of ZheJiang University (Engineering Science)    2024, 58 (6): 1107-1120.   DOI: 10.3785/j.issn.1008-973X.2024.06.002
Abstract   HTML PDF (1559KB) ( 626 )  

Few existing studies cover the state-of-the-art multi-objective particle swarm optimization (MOPSO) algorithms. To fill the gap in this area, the research background of multi-objective optimization problems (MOPs) was introduced, and the fundamental theories of MOPSO were described. The MOPSO algorithms were divided into three categories according to their features: Pareto-dominated-based MOPSO, decomposition-based MOPSO, and indicator-based MOPSO, and a detailed description of their existing classical algorithms was also developed. Next, relevant evaluation indicators were described, and seven representative algorithms were selected for performance analysis. The experimental results demonstrated the strengths and weaknesses of each of the traditional MOPSO and three categories of improved MOPSO algorithms. Among them, the indicator-based MOPSO performed better in terms of convergence and diversity. Then, the applications of MOPSO algorithms in production scheduling, image processing, and power systems were briefly introduced. Finally, the limitations and future research directions of the MOPSO algorithm for solving complex optimization problems were discussed.

Table and Figures | Reference | Related Articles | Metrics
Review of data-driven intelligent computation and its application
Rui DAI,Jing JIE,Wanliang WANG,Qianlin YE,Fei WU
Journal of ZheJiang University (Engineering Science)    2025, 59 (2): 227-248.   DOI: 10.3785/j.issn.1008-973X.2025.02.002
Abstract   HTML PDF (1476KB) ( 236 )  

State-of-the-art data-driven intelligent computations (DDICs) were comprehensively reviewed in order to effectively solve the increasingly complex and expensive optimization problems (EOPs) emerging in real-world applications, which can effectively reduce computing costs and improve solutions. The latest research achievements of DDICs were outlined from both algorithm and application perspectives. Various technical points in generalized DDICs and adaptive DDICs were summarized and categorized. The challenges and opportunities faced by DDICs in solving EOPs were analyzed. Future research potential trends were proposed, such as conducting deeper theoretical analyses, exploring novel learning paradigms, applying these methods in various practical fields, and so on. This aims to provide targeted references and directions for researchers, stimulating innovative ideas to more effectively address the complex EOPs encountered in real-world applications.

Table and Figures | Reference | Related Articles | Metrics