|
|
Survey of deep learning based EEG data analysis technology |
Bo ZHONG(),Pengfei WANG,Yiqiao WANG,Xiaoling WANG*() |
School of Computer Science and Technology, East China Normal University, Shanghai 200062, China |
|
|
Abstract A thorough analysis and cross-comparison of recent relevant works was provided, outlining a closed-loop process for EEG data analysis based on deep learning. EEG data were introduced, and the application of deep learning in three key stages: preprocessing, feature extraction, and model generalization was unfolded. The research ideas and solutions provided by deep learning algorithms in the respective stages were delineated, including the challenges and issues encountered at each stage. The main contributions and limitations of different algorithms were comprehensively summarized. The challenges faced and future directions of deep learning technology in handling EEG data at each stage were discussed.
|
Received: 23 October 2023
Published: 26 April 2024
|
|
Fund: 国家自然科学基金资助项目(61972155). |
Corresponding Authors:
Xiaoling WANG
E-mail: bzhong@stu.ecnu.edu.cn;xlwang@cs.ecnu.edu.cn
|
基于深度学习的EEG数据分析技术综述
对近年来的相关工作进行全面分析、横向比较,梳理出基于深度学习的EEG数据分析闭环流程. 对EEG数据进行介绍,从深度学习在EEG数据预处理、特征提取以及模型泛化3个关键阶段的应用进行展开,梳理深度学习算法在相应阶段提供的研究思路和解决方案,包括各阶段所存在的难点与问题. 全方位总结出不同算法的主要贡献和局限性,讨论深度学习技术在各个阶段处理EEG数据时所面临的挑战及未来的发展方向.
关键词:
头皮脑电(EEG),
闭环流程,
深度学习,
预处理,
特征提取,
模型泛化
|
|
[1] |
HOSSEINU M P, HOSSEINI A, AHI K A review on machine learning for EEG signal processing in bioengineering[J]. IEEE Reviews in Biomedical Engineering, 2020, 14: 204- 218
|
|
|
[2] |
JIANG X, BIAN G B, TIAN Z Removal of artifacts from EEG signals: a review[J]. Sensors, 2019, 19 (5): 987
doi: 10.3390/s19050987
|
|
|
[3] |
ZHANG X, YAO L, WANG X, et al. A survey on deep learning based brain computer interface: recent advances and new frontiers [EB/OL]. [2019-05-10]. https://arxiv.org/pdf/1905.04149.
|
|
|
[4] |
OKAMOTO M, DAN H, SAKAMOTO K, et al Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping[J]. Neuroimage, 2004, 21 (1): 99- 111
doi: 10.1016/j.neuroimage.2003.08.026
|
|
|
[5] |
O'REILLY C, GOSSELIN N, CARRIER J, et al Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research[J]. Journal of Sleep Research, 2014, 23 (6): 628- 635
doi: 10.1111/jsr.12169
|
|
|
[6] |
GOLDBERGER A L, AMARAL L A N, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): e215- e220
|
|
|
[7] |
ZHENG W L, LIU W, LU Y, et al Emotionmeter: a multimodal framework for recognizing human emotions[J]. IEEE Transactions on Cybernetics, 2019, 49 (3): 1110- 1122
doi: 10.1109/TCYB.2018.2797176
|
|
|
[8] |
KOELSTRA S, MUHL C, SOLEYMANI M, et al Deap: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3 (1): 18- 31
doi: 10.1109/T-AFFC.2011.15
|
|
|
[9] |
ZHAO Q, ZHANG L. Temporal and spatial features of single-trial EEG for brain-computer interface [EB/OL]. [2023-10-01]. https://doi.org/10.1155/2007/37695.
|
|
|
[10] |
MOHANTY R, SETHARES W A, NAIR V A, et al Rethinking measures of functional connectivity via feature extraction[J]. Scientific Reports, 2020, 10 (1): 1298
doi: 10.1038/s41598-020-57915-w
|
|
|
[11] |
SALIS C I, MALISSOYAS A E, BIZOPOULOS P A, et al. Denoising simulated EEG signals: a comparative study of EMD, wavelet transform and Kalman filter [C]// 13th IEEE International Conference on BioInformatics and BioEngineering . Los Alamitos: IEEE, 2013: 1-4.
|
|
|
[12] |
ZHANG H, ZHAO M, WEI C, et al EEGdenoisenet: a benchmark dataset for deep learning solutions of EEG denoising[J]. Journal of Neural Engineering, 2021, 18 (5): 056057
doi: 10.1088/1741-2552/ac2bf8
|
|
|
[13] |
BROPHY E, REDMOND P, FLEURY A, et al Denoising EEG signals for real-world BCI applications using GANs[J]. Frontiers in Neuroergonomics, 2022, 2: 44
|
|
|
[14] |
AN Y, LAM H K, LING S H Auto-denoising for EEG signals using generative adversarial network[J]. Sensors, 2022, 22 (5): 1750
doi: 10.3390/s22051750
|
|
|
[15] |
MASHHADI N, KHUZANI A Z, HEIDARI M, et al. Deep learning denoising for EOG artifacts removal from EEG signals [C]// IEEE Global Humanitarian Technology Conference . Seattle: IEEE, 2020: 1-6.
|
|
|
[16] |
SAWANGJAI P, TRAKULRUANGROJ M, BOONNAG C, et al EEGANet: removal of ocular artifacts from the EEG signal using generative adversarial networks[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26 (10): 4913- 4924
|
|
|
[17] |
ZHANG H, WEI C, ZHAO M, et al. A novel convolutional neural network model to remove muscle artifacts from EEG [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Toronto: IEEE, 2021: 1265-1269.
|
|
|
[18] |
SUN W, SU Y, WU X, et al A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals[J]. Neurocomputing, 2020, 404: 108- 121
doi: 10.1016/j.neucom.2020.04.029
|
|
|
[19] |
HARTMANN K G, SCHIRRMEISTER R T, BALL T. EEG-GAN: generative adversarial networks for electroencephalograhic (EEG) brain signals [EB/OL]. (2018-06-05)[2023-10-01]. https://arxiv.org/pdf/1905.04149.
|
|
|
[20] |
CORLEY I A, HUANG Y. Deep EEG super-resolution: upsampling EEG spatial resolution with generative adversarial networks [C]// IEEE EMBS International Conference on Biomedical and Health Informatics . Las Vegas: IEEE, 2018: 100-103.
|
|
|
[21] |
LUO T, FAN Y, CHEN L, et al EEG signal reconstruction using a generative adversarial network with Wasserstein distance and temporal-spatial-frequency loss[J]. Frontiers in Neuroinformatics, 2020, 14: 15
doi: 10.3389/fninf.2020.00015
|
|
|
[22] |
ANTONIADES A, SPYROU L, MARTIN-LOPEZ D, et al Deep neural architectures for mapping scalp to intracranial EEG[J]. International Journal of Neural Systems, 2018, 28 (8): 1850009
doi: 10.1142/S0129065718500090
|
|
|
[23] |
HU M, CHEN J, JIANG S, et al E2SGAN: EEG-to-SEEG translation with generative adversarial networks[J]. Frontiers in Neuroscience, 2022, 16: 971829
doi: 10.3389/fnins.2022.971829
|
|
|
[24] |
TSIOURIS Κ Μ, PEZOULAS V C, ZERVAKIS M, et al A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals[J]. Computers in Biology and Medicine, 2018, 99: 24- 37
doi: 10.1016/j.compbiomed.2018.05.019
|
|
|
[25] |
EL-FIQI H, KASMARIK K, BEZERIANOS A, et al. Gate-layer autoencoders with application to incomplete EEG signal recovery [C]// International Joint Conference on Neural Networks . Budapest: IEEE, 2019: 1-8.
|
|
|
[26] |
AL-MARRIDI A Z, MOHAMED A, ERBAD A. Convolutional auto-encoder approach for EEG compression and reconstruction in m-health systems [C]// 14th International Wireless Communications and Mobile Computing Conference . Chongqing: IEEE, 2018: 370-375.
|
|
|
[27] |
JIAO Z, YOU H, YANG F, et al. Decoding EEG by visual guided deep neural networks [C]// International Joint Conferences on Artificial Intelligence . Macao: IEEE, 2019: 1387-1393.
|
|
|
[28] |
YAO Y, PLESTED J, GEDEON T. Deep feature learning and visualization for EEG recording using autoencoders [C]// 25th International Conference on Neural Information Processing . Siem Reap: Springer, 2018: 554-566.
|
|
|
[29] |
BASHIVAN P, RISH I, YEASIN M, et al. Learning representations from EEG with deep recurrent-convolutional neural networks [EB/OL]. (2016-02-29) [2023-10-01]. https://arxiv.org/pdf/1511.06448.
|
|
|
[30] |
YU M, SUN Y, ZHU B, et al. Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG [J]. Neurocomputing , 2020, 378: 270-282.
|
|
|
[31] |
PRASANTH T, THOMAS J, YUVARAJ R, et al. Deep learning for interictal epileptiform spike detection from scalp EEG frequency sub bands [C]// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society . Montréal: IEEE, 2020: 3703-3706.
|
|
|
[32] |
SHEN F, PENG Y, KONG W, et al. Multi-scale frequency bands ensemble learning for EEG-based emotion recognition [EB/OL]. (2021-02-10)[2023-10-01].https://www.mdpi.com/1424-8220/21/4/1262.
|
|
|
[33] |
MIAO M, ZHENG L, XU B, et al. A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition [EB/OL]. (2022-09-18) [2023-10-01]. https://www.sciencedirect.com/science/article/abs/pii/S174680942200595X.
|
|
|
[34] |
YAO Y, JP A, TG A. Information-preserving feature filter for short-term EEG signals [J]. Neurocomputing , 2020, 408: 91-99.
|
|
|
[35] |
MIAO M, HU W, YIN H, et al. Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network [EB/OL]. (2020-07-20)[2023-10-01]. https://www.hindawi.com/journals/cmmm/2020/1981728/.
|
|
|
[36] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EE-GNet: a compact convolutional network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013.1- 056013.17
|
|
|
[37] |
ZHAO D, TANG F, SI B, et al Learning joint space-time-frequency features for EEG decoding on small labeled data[J]. Neural Networks, 2019, 114: 67- 77
doi: 10.1016/j.neunet.2019.02.009
|
|
|
[38] |
WANG J, LIANG S, HE D, et al. A sequential graph convolutional network with frequency-domain complex network of EEG signals for epilepsy detection [C]// IEEE International Conference on Bioinformatics and Bio-medicine . Seoul: IEEE, 2020.
|
|
|
[39] |
ZHANG X, LU D, SHEN J, et al. Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection [C]// IEEE International Conference on Bioinformatics and Biomedicine . Seoul: IEEE, 2020: 893-900.
|
|
|
[40] |
FANG Z, WANG W, REN S, et al. Learning regional attention convolutional neural network for motion intention recognition based on EEG data [C]// 29th International Conference on International Joint Conferences on Artificial Intelligence . Yokohama: IEEE, 2021: 1570-1576.
|
|
|
[41] |
ZHONG P, WANG D, MIAO C EEG-based emotion recognition using regularized graph neural networks[J]. IEEE Transactions on Affective Computing, 2020, 13 (3): 1290- 1301
|
|
|
[42] |
SCHMIDT L A, TRAINOR L J Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions[J]. Cognition and Emotion, 2001, 15 (4): 487- 500
doi: 10.1080/02699930126048
|
|
|
[43] |
LI Y, ZHENG W, ZONG Y, et al A bi-hemisphere domain adversarial neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2018, 12 (2): 494- 504
|
|
|
[44] |
SONG T, LIU S, ZHENG W, et al. Instance-adaptive graph for EEG emotion recognition [C]// AAAI Conference on Artificial Intelligence . New York: AAAI, 2020: 2701-2708.
|
|
|
[45] |
LI R, WANG Y, LU B L. A multi-domain adaptive graph convolutional network for EEG-based emotion recognition [C]// 29th ACM International Conference on Multimedia . Chengdu: ACM, 2021: 5565-5573.
|
|
|
[46] |
LI A, HUYNH C, FITZGERALD Z, et al Neural fragility as an EEG marker of the seizure onset zone[J]. Nature Neuroscience, 2021, 24 (10): 1465- 1474
doi: 10.1038/s41593-021-00901-w
|
|
|
[47] |
GUNNARSDOTTIR K M, LI A, SMITH R J, et al Source-sink connectivity: a novel interictal EEG marker for seizure localization[J]. Brain, 2022, 145 (11): 3901- 3915
doi: 10.1093/brain/awac300
|
|
|
[48] |
KOSTAS D, AROCA-OUELLETTE S, RUDZICZ F BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data[J]. Frontiers in Human Neuroscience, 2021, 15: 653659
doi: 10.3389/fnhum.2021.653659
|
|
|
[49] |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding [EB/OL].(2019-05-24)[2023-10-01].https://arxiv.org/pdf/1810.04805.
|
|
|
[50] |
JIA Z, LIM Y, WANG J, et al Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1977- 1986
doi: 10.1109/TNSRE.2021.3110665
|
|
|
[51] |
LI Y, CHEN J, LI F, et al. Gmss: graph-based multi-task self-supervised learning for EEG emotion recognition [J]. IEEE Transactions on Affective Computing , 2022, 14(3): 2512-2525.
|
|
|
[52] |
KUMAR V, REDDY L, SHARMA S K, et al. mulEEG: a multi-view representation learning on EEG signals [C]// Medical Image Computing and Computer Assisted Intervention. Singapore: Springer, 2022: 398-407.
|
|
|
[53] |
MIKKELSEN K B, KIDMOSE P, HANSEN L K On the key hole hypothesis: high mutual information between ear and scalp EEG[J]. Frontiers in Human Neuroscience, 2017, 11 (341): 115
|
|
|
[54] |
ANANDAKUMAR M, PRADEEPKUMAR J, KAPPEL S L, et al. A knowledge distillation framework for enhancing ear-EEG based sleep staging with scalp-EEG data [EB/OL]. (2022-10-27) [2023-10-01]. https://arxiv.org/pdf/2211.02638.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|