|
|
Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU |
Jia-chi ZHAO1( ),Tian-qi WANG2,Li-fang ZENG2,*( ),Xue-ming SHAO2 |
1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China 2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract Traditional computational fluid dynamics surrogate model cannot effectively simulate the highly nonlinear fluid, and existed deep learning-based surrogate models are difficult to deal with temporal sequence information effectively. Based on the gated recurrent units (GRU) and the multilayer perceptron, a two-dimensional airfoil of a flapping-wing aircraft was studied to establish a model for rapid predict unsteady aerodynamic parameters of the flapping-wing. The real-time prediction for the highly unsteady and nonlinear aerodynamic parameters of the flapping wing was realized. The computational fluid dynamics method was used to obtain the aerodynamic parameters of the flapping two-dimensional airfoil and the parameters were used as samples to train the prediction model. The flapping amplitude, the frequency, the swing angle and the motion time of the flapping wing were fed into the prediction model, and the lift, the drag and the moment in the relevant condition could be quickly output. Experimental results showed that the established prediction model has high accuracy and fast calculation speed. The prediction model could realize real-time high-precision prediction for unsteady aerodynamic parameters of flapping wings.
|
Received: 10 June 2022
Published: 30 June 2023
|
|
Fund: 国防基础科研计划资助项目(JCKY2019205A006) |
Corresponding Authors:
Li-fang ZENG
E-mail: jczhao@zju.edu.cn;lifang_zeng@zju.edu.cn
|
基于GRU的扑翼非定常气动特性快速预测
为了克服传统计算流体力学代理模型不能有效模拟流体力学高度非线性系统的困难,解决现有基于深度学习的代理模型难以有效处理时间顺序信息的问题,以扑翼飞行器的二维翼型为研究对象,基于门控循环单元(GRU)与多层感知机,建立扑翼非定常气动参数的快速预测模型,实现对扑翼扑动时高度非定常、非线性气动参数的实时预测. 使用计算流体力学方法获得扑翼二维翼型扑动时的气动参数,以该参数为样本训练预测模型. 将扑翼的扑动振幅、频率、摆动角度与运动时间输入预测模型,快速得到扑翼在对应扑动状态下的升力、阻力与力矩. 实验结果表明,所建立的预测模型精度高、计算速度快,能够实现对扑翼非定常气动参数变化的实时高精度预测.
关键词:
门控循环单元(GRU),
多层感知机,
扑翼,
气动参数预测,
深度学习,
计算流体力学
|
|
[1] |
宋笔锋, 稂鑫雨, 薛栋, 等 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学:技术科学, 2022, 52 (6): 893- 910 SONG Bi-feng, LANG Xin-yu, XUE Dong, et al A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia Sinica Technologica, 2022, 52 (6): 893- 910
doi: 10.1360/SST-2020-0515
|
|
|
[2] |
杨茂, 徐珊珊 耦合运动的襟翼-翼型气动特性数值仿真[J]. 浙江大学学报: 工学版, 2014, 48 (1): 149- 153 YANG Mao, XU Shan-shan Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (1): 149- 153
|
|
|
[3] |
张志君, 陈默, 杨贺捷, 等 基于XFlow的仿生扑翼飞行器机翼气动特性分析[J]. 东北大学学报: 自然科学版, 2021, 42 (6): 821- 828 ZHANG Zhi-jun, CHEN Mo, YANG He-jie, et al Analysis of aerodynamic characteristics of bionic flapping wing aircraft based on XFlow[J]. Journal of Northeastern University: Natural Science, 2021, 42 (6): 821- 828
|
|
|
[4] |
ZHU Z G, ZHAO J T, HE Y Y, et al Aerodynamic analysis of insect-like flapping wings in fan-sweep and parallel motions with the slit effect[J]. Biomimetic Intelligence and Robotics, 2022, 2 (2): 100046
doi: 10.1016/j.birob.2022.100046
|
|
|
[5] |
CHEN S, WANG L, HE Y Y, et al Aerodynamic performance of a flyable flapping wing rotor with passive pitching angle variation[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (9): 9176- 9184
|
|
|
[6] |
HUANG R, HU H, ZHAO Y Nonlinear reduced-order modeling for multiple-input/multiple output aerodynamic systems[J]. AIAA Journal, 2014, 52 (6): 1219- 1231
doi: 10.2514/1.J052323
|
|
|
[7] |
LUCIA D J, BERAN P S, SILVA W A Reduced-order modeling: new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40 (1/2): 51- 117
|
|
|
[8] |
YANG L C, YOSHUA B, GEOFFREY H Deep learning[J]. Nature, 2015, 521: 436- 444
doi: 10.1038/nature14539
|
|
|
[9] |
SEKAR V, JIANG Q H, SHU C, et al Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31: 057103
doi: 10.1063/1.5094943
|
|
|
[10] |
吕召阳, 聂雪媛, 赵奥博 基于CNN机翼气动系数预测[J]. 北京航空航天大学学报, 2023, 49 (3): 674- 680 LYU Zhao-yang, NIE Xue-yuan, ZHAO Ao-bo Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (3): 674- 680
doi: 10.13700/j.bh.1001-5965.2021.0276
|
|
|
[11] |
HAN R K, WANG Y X, ZHANG Y, et al A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31: 127101
doi: 10.1063/1.5127247
|
|
|
[12] |
PENG J Z, CHEN S H, AUBRY N, et al Time-variant prediction of flow over an airfoil using deep neural network[J]. Physics of Fluids, 2020, 32: 123602
doi: 10.1063/5.0022222
|
|
|
[13] |
陈海, 钱炜祺, 何磊 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36 (2): 294- 299 CHEN Hai, QIAN Wei-qi, HE Lei Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36 (2): 294- 299
|
|
|
[14] |
JIN X W, CHENG P, CHEN W L, et al Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30: 047105
doi: 10.1063/1.5024595
|
|
|
[15] |
李亚超, 熊德意, 张民 神经机器翻译综述[J]. 计算机学报, 2018, 41 (12): 2734- 2755 LI Ya-chao, XIONG De-yi, ZHANG Min A survey of neural machine translation[J]. Chinese Journal of Computers, 2018, 41 (12): 2734- 2755
|
|
|
[16] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1724-1734.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|