|
|
Continual learning framework of named entity recognition in aviation assembly domain |
Pei-feng LIU( ),Lu QIAN,Xing-wei ZHAO*( ),Bo TAO |
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract In order to build an aviation assembly knowledge graph composed of assembly process information, assembly technology knowledge, related industry standards and internal connections of the three, a named entity recognition technology framework based on continual learning was proposed. The characteristic of the proposed framework was that it maintained high recognition performance throughout the progressive learning process from zero corpus to large-scale corpus, without relying on manual feature setting. A comparative performance experiment of the proposed framework was carried out in practical industrial scenarios, the experiment proceeded from general assembly and component assembly, and the manipulations of the pull rod and cable installation were regard as a specific experimental case. Experimental results show that the proposed framework is significantly better in accuracy, recall, and F1 value than previous algorithms, while handling different-scale corpus environments. And the credible results for named entity recognition tasks can be provided consistently by the proposed framework in the aviation assembly domain.
|
Received: 14 June 2022
Published: 30 June 2023
|
|
Fund: 国家自然科学基金资助项目(52275020, 62293514) |
Corresponding Authors:
Xing-wei ZHAO
E-mail: stevenpliu@hust.edu.cn;zhaoxingwei@hust.edu.cn
|
航空装配领域中命名实体识别的持续学习框架
为了构建航空装配领域中装配流程信息、装配技术知识、行业标准和三者内在联系组成的航空装配知识图谱,提出基于持续学习的命名实体识别技术框架. 所提框架的特点是从零语料到大规模语料的渐进式学习过程中,在不依赖人工设定特征的情况下,始终保持较高的识别效果. 从飞机总装配和部件对接的实际工业场景展开所提框架的性能对比实验,并以操纵拉杆和钢索的安装为实验案例. 实验结果表明,在处理不同规模的语料环境的情况下,所提框架在正确率、召回率、F1值上均显著优于以往算法,所提框架可以为航空装配领域命名实体识别任务持续提供可信的结果.
关键词:
智能制造,
航空装配,
命名实体识别,
持续学习,
深度学习
|
|
[1] |
陈永佩, 杜震洪, 刘仁义, 等 一种引入实体的地理语义相似度混合计算模型[J]. 浙江大学学报: 理学版, 2018, 45 (2): 196- 204 CHEN Yong-pei, DU Zhen-hong, LIU Ren-yi, et al A hybrid geo-semantic similarity measurement model introducing geographic entities[J]. Journal of Zhejiang University: Science Edition, 2018, 45 (2): 196- 204
|
|
|
[2] |
陈善雄, 王小龙, 韩旭, 等 一种基于深度学习的古彝文识别方法[J]. 浙江大学学报: 理学版, 2019, 46 (3): 261- 269 CHEN Shan-xiong, WANG Xiao-long, HAN Xu, et al A recognition method of Ancient Yi character based on deep learning[J]. Journal of Zhejiang University: Science Edition, 2019, 46 (3): 261- 269
|
|
|
[3] |
张栋豪, 刘振宇, 郏维强, 等 知识图谱在智能制造领域的研究现状及其应用前景综述[J]. 机械工程学报, 2021, 57 (5): 90- 113 ZHANG Dong-hao, LIU Zhen-yu, JIA Wei-qiang, et al A review on knowledge graph and its application prospects to intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57 (5): 90- 113
doi: 10.3901/JME.2021.05.090
|
|
|
[4] |
邱凌, 张安思, 李少波, 等 航空制造知识图谱构建研究综述[J]. 计算机应用研究, 2022, 39 (4): 968- 977 QIU Ling, ZHANG An-si, LI Shao-bo, et al Survey on building knowledge graphs for aerospace manufacturing[J]. Application Research of Computers, 2022, 39 (4): 968- 977
doi: 10.19734/j.issn.1001-3695.2021.09.0367
|
|
|
[5] |
徐增林, 盛泳潘, 贺丽荣, 等 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45 (4): 589- 606 XU Zeng-lin, SHENG Yong-pan, HE Li-rong, et al Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45 (4): 589- 606
|
|
|
[6] |
杨贺羽. 基于深度学习的半监督式命名实体识别[D]. 沈阳: 沈阳工业大学, 2019. YANG He-yu. Semi-supervised named entity recognition based on deep learning [D]. Shenyang: Shenyang University of Technology, 2019.
|
|
|
[7] |
LI J, SUN A, HAN J, et al A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34: 50- 70
doi: 10.1109/TKDE.2020.2981314
|
|
|
[8] |
RING M B. Child: a first stop towards continual learning [M]// THRUN S, PRATT L. Learning to learn. New York: Springer, 1998 : 261-292
|
|
|
[9] |
LEVOW G. The third international Chinese language processing bakeoff: word segmentation and named entity recognition [C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Sydney: Association for Computational Linguistics, 2006: 108-117.
|
|
|
[10] |
OCKER F, PAREDIS C J J, VOGEL-HEUSER B Applying knowledge bases to make factories smarter[J]. Automatisierungstechnik, 2019, 67 (6): 504- 517
doi: 10.1515/auto-2018-0138
|
|
|
[11] |
肖勇, 郑楷洪, 王鑫, 等 基于联合神经网络学习的中文电力计量命名实体识别[J]. 浙江大学学报: 理学版, 2021, 48 (3): 321- 330 XIAO Yong, ZENG Kai-hong, WANG Xin, et al Chinese named entity recognition in electric power metering domain based on neural joint learning[J]. Journal of Zhejiang University: Science Edition, 2021, 48 (3): 321- 330
|
|
|
[12] |
CAMASTRA F, VINCIARELLI A. Markovian models for sequential data [M]// CAMASTRA F, VINCIARELLI A. Machine learning for audio, image and video analysis. London: Springer, 2008: 265-303.
|
|
|
[13] |
SUTTON C, MCCALLUM A. An introduction to conditional random fields [EB/OL]. (2010-11-17). https://arxiv.org/pdf/1011.4088.pdf.
|
|
|
[14] |
HAMMERTON J. Named entity recognition with long short-term memory [C]// Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003. Stroudsburg: Association for Computational Linguistics, 2003: 172-175.
|
|
|
[15] |
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition [C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language. San Diego: Association for Computational Linguistics, 2016: 260–270.
|
|
|
[16] |
CHEN A, PENG F, SHAN R, et al. Chinese named entity recognition with conditional probabilistic models [C]// Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing. Sydney: Association for Computational Linguistics, 2006: 173-176.
|
|
|
[17] |
ZHOU J, QU W, FEN Z Chinese named entity recognition via joint identification and categorization[J]. Chinese Journal of Electronics, 2013, 22 (2): 225- 230
|
|
|
[18] |
ZHANG Y, WANG Y, YANG J Lattice LSTM for Chinese sentence representation[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2020, 28: 1506- 1519
doi: 10.1109/TASLP.2020.2991544
|
|
|
[19] |
杨飘, 董文永 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46 (4): 40- 45 YANG Piao, DONG Wen-yong Chinese named entity recognition method based on BERT embedding[J]. Computer Engineering, 2020, 46 (4): 40- 45
doi: 10.19678/j.issn.1000-3428.0054272
|
|
|
[20] |
《航空制造工程手册》总编委会. 航空制造工程手册: 飞机装配[M]. 北京: 航空工业出版社, 2010: 589–625.
|
|
|
[21] |
NAKAYAMA H, KUBO T, KAMURA J, et al. Doccano: text annotation tool for human [CP/DK]. (2022-05-19). https://github.com/doccano/doccano.
|
|
|
[22] |
PENG N, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings [C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015: 548–554.
|
|
|
[23] |
彭春艳, 张晖, 包玲玉, 等 基于条件随机域的生物命名实体识别[J]. 计算机工程, 2009, 35 (22): 197- 199 PENG Chun-yan, ZHANG Hui, BAO Ling-yu, et al Biological named entity recognition based on conditional random fields[J]. Computer Engineering, 2009, 35 (22): 197- 199
doi: 10.3969/j.issn.1000-3428.2009.22.067
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|