Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (6): 1175-1185    DOI: 10.3785/j.issn.1008-973X.2023.06.013
    
Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy
Cai-hua WANG1(),Xu-hui LAI1,Huan-qing YANG2,Zheng-ying WEI1,*()
1. Institute of Advanced Manufacturing Technology, Xi'an Jiaotong University, Xi'an 710049, China
2. AVIC Xi’an Aero-Engine (Group) Limited, Xi’an 710021, China
Download: HTML     PDF(2407KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional mesoscopic numerical model of the In718 overhanging fusion channel was developed to address the problem of overhanging print quality of lattice tilting struts in laser powder bed fusion (LPBF). The powder bed was established in EDEM based on the discrete element method. The LPBF channel forming process was implemented in Flow-3D based on the finite volume method, and the flow, heat transfer, melting and solidification processes of the laser-powder particle interaction were analysed by numerical simulation. Results show that the solid-powder interface region is prone to discontinuous fusion channel, and improving the process parameters can improve the continuity of fusion channel forming in the region. The high laser power (300 W) applied at low energy density (44.19 J/mm3) not only does not produce keyhole defects, but also results in stronger Marangoni flow and faster melt pool flow than the low power group (87.5 W) to fill the discontinuities, and improves the continuity of the fusion channel in the solid-powder interface region.



Key wordslaser powder bed fusion (LPBF)      overhang structure      discontinuity      heat and mass transfer      In718     
Received: 14 May 2022      Published: 30 June 2023
CLC:  TG 146.1  
Fund:  军工基础性科研院所稳定支持项目(2019KGW-YY4007Tm)
Corresponding Authors: Zheng-ying WEI     E-mail: 3120101153@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
Cite this article:

Cai-hua WANG,Xu-hui LAI,Huan-qing YANG,Zheng-ying WEI. Numerical simulation and experimental study on forming of overhang structure by laser power bed fusion of In718 alloy. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1175-1185.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.06.013     OR     https://www.zjujournals.com/eng/Y2023/V57/I6/1175


In718合金激光粉末床熔融悬垂结构成形数值模拟与实验研究

针对激光粉末床熔融 (LPBF)成形中点阵倾斜支杆的悬垂打印质量问题, 以In718悬垂熔道为研究单元,建立三维介观数值模型. 基于离散单元法在建模软件EDEM中建立粉末床模型, 基于有限体积法在Flow-3D中实现LPBF熔道成形过程, 通过数值模拟分析激光-粉末颗粒相互作用的流动、传热、熔化、凝固过程. 结果表明, 实体-粉末交界区域容易出现不连续的熔道, 改善工艺参数可以提高该区域熔道成形的连续性. 在低能量密度(44.19 J/mm3)下, 施加高激光功率(300 W)不会产生匙孔缺陷, 能够以比低激光功率(87.5 W)更强的马兰戈尼流动、更快的熔池流动速度填充不连续点, 提高实体-粉末交界区域的熔道连续性.


关键词: 激光粉末床熔融(LPBF),  悬垂结构,  不连续性,  传热传质,  In718 
Fig.1 Schematic diagram of laser powder bed fusion forming
Fig.2 Meshing of computational fluid dynamics domains
Fig.3 Thermo-physical properties of In718 nickel-based superalloy with temperature
参数 数值
In718固相线Ts/K 1 533
In718液相线Tl/K 1 609
In718汽化温度Tv/K 3 188
熔化潜热Lsl/( J·kg?1) 2.27×105
蒸发潜热Lv/( J·kg?1) 7.34×105
M/( kg·mol?1) 0.059 75
激光吸收率系数α 0.3
环境温度Te/K 293.15
光斑半径ω/μm 40
表面辐射系数εr 0.36
Stefan-Boltzmann常数 σs/(W·m?2·K?4) 5.67×105
对流系数hc/(W·m?2·K?1) 10
环境压力p0/Pa 1.013×105
摩尔气体常数R/(J·mol?1·K?1) 8.314
表面张力系数σ/(N·m?1) 1.882
温度敏感系数( $ \text{dσ}·\text{d}{T}^{-1} $)/ (N·m?1·K?1) ?0.1×10?3
Tab.1 Initial input parameters for numerical simulation of In718 nickel-based superalloy
Fig.4 Comparison of simulation results (left) and experimental results (right) of fusion channel morphology
Fig.5 Melt width and depth with energy density
样本 P/W vs/(mm·s?1) 扫描区域 ED/(J·mm?3)
A 290.0 900 实体 73.23
B 100.0 900 实体 25.25
C 400.0 900 实体 101.01
D 175.0 900 交界 44.19
E 290.0 900 交界 73.23
F 87.5 450 交界 44.19
G 262.5 1 350 交界 44.19
Tab.2 Simulation process parameters of In718 nickel-based superalloy
Fig.6 Geometric model of simulated specimen
Fig.7 Schematic diagram of solid-powder junction area overhanging fusion channel forming
Fig.8 Scanning electron microscope image of In718 powder material
Fig.9 Temperature field and velocity field of solid support area of overhanging structure
Fig.10 Temperature distribution curve along centerline of molten pool at 350 μs
Fig.11 Temperature and velocity field of powder support area of overhanging structure
Fig.12 Temperature distribution curve along centerline of molten pool at 900 μs
Fig.13 Influence of laser energy density on temperature distribution and surface of single track in solid support area
Fig.14 Influence of laser energy density on temperature distribution and surface of single track in interface region
Fig.15 Variation of molten pool temperature on probe line A-B at low energy density
Fig.16 Temperature evolution of detection point at center of molten pool under different energy densities
Fig.17 Influence of process parameters on temperature distribution and surface of single track in interface area
Fig.18 Temperature distribution curve along centerline of molten pool under different process parameters
Fig.19 Molten pool morphology, temperature and velocity distribution at different times in simulations
[1]   尹华, 白培康, 刘斌 金属粉末选区激光熔化技术的研究现状及其发展趋势[J]. 热加工工艺, 2010, 39 (1): 140- 144
YIN Hua, BAI Pei-kang, LIU Bin Present situation and development trend of selective laser melting technology for metal powder[J]. Hot Working Technology, 2010, 39 (1): 140- 144
doi: 10.3969/j.issn.1001-3814.2010.01.045
[2]   方岱宁, 张一燕, 崔晓东. 轻质点阵材料力学与多功能设计 [M]. 北京: 科学出版社, 2009: 14-18.
[3]   YU B, HAN B, SU P B, et al Graded square honeycomb as sandwich core for enhanced mechanical performance[J]. Materials and Design, 2016, 89: 642- 652
doi: 10.1016/j.matdes.2015.09.154
[4]   巩水利, 锁红波, 李怀学 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, (13): 66- 71
GONG Shui-li, SUO Hong-bo, LI Huai-xue Development and application of metal additive manufacturing technology[J]. Aeronautical Manufacturing Technology, 2013, (13): 66- 71
doi: 10.3969/j.issn.1671-833X.2013.13.012
[5]   赵冰, 李志强, 侯红亮, 等 金属三维点阵结构制备技术研究进展[J]. 稀有金属材料与工程, 2016, 45 (8): 2189- 2200
ZHAO Bing, LI Zhi-qiang, HOU Hong-liang, et al Research progress of fabrication methods of metal three dimensional lattice structure[J]. Rare Metal Materials and Engineering, 2016, 45 (8): 2189- 2200
[6]   COVARRUBIAS E E, ESHRAGHI M Effect of build angle on surface properties of nickel superalloys processed by selective laser melting[J]. Journal of Metals, 2018, 70: 336- 342
doi: 10.1007/s11837-017-2706-y
[7]   LE K Q, WONG C H, CHUA K H G, et al Discontinuity of overhanging melt track in selective laser melting process[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120284
doi: 10.1016/j.ijheatmasstransfer.2020.120284
[8]   JING C, ZHU Y, WANG J, et al Investigation on morphology and mechanical properties of rod units in lattice structures fabricated by selective laser melting[J]. Materials, 2021, 14: 3994
doi: 10.3390/ma14143994
[9]   VRANA R, VAVERKA O, KOUTNY D, et al. Shape and dimensional analysis of lattice structures produced by selective laser melting [J]. MM Science Journal, 2020: 3938-3942.
[10]   ZHANG L, ZHANG S, ZHU H, et al Horizontal dimensional accuracy prediction of selective laser melting[J]. Materials and Design, 2018, 160: 9- 20
doi: 10.1016/j.matdes.2018.08.059
[11]   XIANG Z, WANG L, YANG C, et al Analysis of the quality of slope surface in selective laser melting process by simulation and experiments[J]. Optik, 2019, 176: 68- 77
doi: 10.1016/j.ijleo.2018.09.049
[12]   KING W, ANDERSON A T, FERENCZ R M, et al Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore national laboratory[J]. Materials Science and Technology, 2015, 31 (8): 957- 968
doi: 10.1179/1743284714Y.0000000728
[13]   WANG D, YANG Y, YI Z, et al Research on the fabricating quality optimization of the overhanging surface in SLM process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65: 1471- 1484
doi: 10.1007/s00170-012-4271-4
[14]   FENG S, CHEN S, KAMAT A M, et al Investigation on shape deviation of horizontal interior circular channels fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2020, 36: 101585
doi: 10.1016/j.addma.2020.101585
[15]   CHEN H, GU D, XIONG J, et al Improving additive manufacturing processability of hard-to-process overhanging structure by selective laser melting[J]. Journal of Materials Processing Technology, 2017, 250: 99- 108
doi: 10.1016/j.jmatprotec.2017.06.044
[16]   KÖRNER C, ATTAR E, HEINL P Mesoscopic simulation of selective beam melting processes[J]. Journal of Materials Processing Technology, 2011, 211 (6): 978- 987
doi: 10.1016/j.jmatprotec.2010.12.016
[17]   TANG C, TAN J L, WONG C H A numerical investigation on the physical mechanisms of single track defects in selective laser melting[J]. International Journal of Heat and Mass Transfer, 2018, 126: 957- 968
doi: 10.1016/j.ijheatmasstransfer.2018.06.073
[18]   PANWISAWAS C, QIU C L, SOVANI Y, et al On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting[J]. Scripta Materialia, 2015, 105: 14- 17
doi: 10.1016/j.scriptamat.2015.04.016
[19]   TAN J L, TANG C, WONG C H A computational study on porosity evolution in parts produced by selective laser melting[J]. Metallurgical and Materials Transactions A, 2018, 49: 3663- 3673
doi: 10.1007/s11661-018-4697-x
[20]   YAN W, GE W, QIAN Y, et al Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting[J]. Acta Materialia, 2017, 134: 324- 333
doi: 10.1016/j.actamat.2017.05.061
[21]   RÖSLER F, BRÜGGEMANN D Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments[J]. Heat and Mass Transfer, 2011, 47: 1027- 1033
doi: 10.1007/s00231-011-0866-9
[22]   MILLS K C Recommended values of thermophysical properties for selected commercial alloy[J]. Aircraft Engineering and Aerospace Technology, 2002, 74 (5): 492
[23]   KRUTH J P, MERCELIS P, VAN VAERENBERGH J, et al. Feedback control of selective laser melting [C]// Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria: [s.n.], 2007: 521-527.
[24]   蒋军杰. 激光选区熔化成形TA15钛合金工艺、组织演变与力学性能研究[D]. 重庆: 重庆大学, 2020.
JIANG Jun-jie. Study on process, microstructure evolution and mechanical properties of TA15 titanium alloy by selective laser melting [D]. Chongqing: Chongqing University, 2020.
[25]   DARYAEI E, REZA RAHIMI TABAR M, MOSHFEGH A Z Surface roughness analysis of hydrophilic SiO2/TiO2/glass nano bilayers by the level crossing approach [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392 (9): 2175- 2181
doi: 10.1016/j.physa.2012.11.058
[26]   HITCHCOCK S J, CARROLL N T, NICHOLAS M G Some effects of substrate roughness on wettability[J]. Journal of Materials Science, 1981, 16: 714- 732
doi: 10.1007/BF02402789
[1] WANG Chao, DONG Fei-ying, FAN Li-wu, YU Zi-tao, HU Ya-cai. Experimental study of heat and mass transfer of saltwater cooling tower[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 666-670.
[2] QIAN Miao, MEI De-qing, LIU Bin-hong,CHEN Zi-chen. Heat and mass transfer characteristics in reforming micro-reactor with micro-pin-fin arrays[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1387-1392.