|
|
Optimal tag selection method for device-free human tracking system |
Jian-sha LU(),Qin BAO,Hong-tao TANG,Yi-ping SHAO,Wen-bin ZHAO |
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
|
|
Abstract A device-free human tracking method based on selected tags was proposed to address the problems of existing human tracking systems, such as large tracking errors, large changes to the environment caused by hardware deployment, and inconvenience for users to wear the device. The radio frequency (RF) power signals of the human body at different positions were collected, and the relationship between the positions of the human body and the power signal was analyzed. In order to mitigate the effect of signal instability on the system, the features of the RF power signal were extracted as the dataset for model training. Different deep learning models were established by using the features of the RF power signal, and the tracking results and label usage under different training methods were compared to select the appropriate model structure and training method. The general opinion and the specific steps of the optimal tag selection method were given after analyzing the experimental results. Experimental results show that the location system based on the optimal tag selection method is feasible. The tracking error was 0.19 m, which was about 5 cm lower than that of the WallSense system, and the number of tags was reduced by 66.7%. The impact of tag deployment on the environment was obviously reduced, and the tag redundancy was reduced while the accuracy was ensured.
|
Received: 09 August 2021
Published: 28 February 2023
|
|
Fund: 浙江省重点研发计划资助项目(2018C01003) |
无设备人体追踪系统的择优标签方法
针对现有人体追踪系统追踪误差大、硬件部署对环境改变大和用户佩戴设备不方便等问题,提出基于择优标签的无设备人体追踪方法. 采集人体在不同位置上的射频(RF)功率信号,分析人体所在位置与功率信号之间的关系. 为了减缓信号不稳定性对系统的影响,提取射频功率信号的特征作为模型训练的数据集. 利用信号特征建立不同的深度学习模型,对比不同训练方式下的追踪效果和标签用量,选择合适的模型结构和训练方式. 分析实验结果,给出普适性意见和最优标签选择方法的具体步骤.实验表明,基于择优标签方法的定位系统是可行的,其中跟踪误差为0.19 m,与表现较好的WallSense系统相比,跟踪误差降低约5 cm,标签量降低66.7%. 基于择优标签方法的定位系统明显降低了标签部署对环境的影响,在保证精度的情况下,减少了标签冗余.
关键词:
无设备追踪,
信号特征,
标签择优,
深度学习,
射频识别
|
|
[1] |
LIU W, LI F, JING C, et al Recognition and location of typical automotive parts based on the RGB-D camera[J]. Complex and Intelligent Systems, 2021, 7 (4): 1759- 1765
doi: 10.1007/s40747-020-00182-z
|
|
|
[2] |
LIM S, LEE S, JUNG J, et al Detection and localization of people inside vehicle using impulse radio ultra-wideband radar sensor[J]. IEEE Sensors Journal, 2019, 20 (7): 3892- 3901
|
|
|
[3] |
SHOAIB M, BOSCH S, INCEL O D, et al Fusion of smartphone motion sensors for physical activity recognition[J]. Sensors, 2014, 14 (6): 10146- 10176
doi: 10.3390/s140610146
|
|
|
[4] |
LIU H, DARABI H, BANERJEE P, et al Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2007, 37 (6): 1067- 1080
doi: 10.1109/TSMCC.2007.905750
|
|
|
[5] |
NI L M, LIU Y, LAU Y C, et al. LANDMARC: indoor location sensing using active RFID [C]// 1st IEEE International Conference on Pervasive Computing and Communications. Fort Worth: IEEE, 2003: 407-417.
|
|
|
[6] |
YANG L , CHEN Y , LI X Y , et al. Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices [C]// 20th ACM Annual International Conference on Mobile Computing and Networking (MobiCom). Maui: ASSOC Computing Machinery, 2014: 237-248.
|
|
|
[7] |
SHEN L, ZHANG Q, PANG J, et al ANTspin: efficient absolute localization method of RFID tags via spinning antenna[J]. Sensors, 2019, 19 (9): 2194- 2213
doi: 10.3390/s19092194
|
|
|
[8] |
梁笑轩, 黄樟钦, 邱兰馨. 一种基于二维相控阵天线的RFID定位方法 [J]. 电子学报, 2018, 46(4): 146-152. LIANG Xiao-xuan, HUANG Zhang-Qin, QIU Lan-xin. An RFID positioning method based on two-dimensional phased array antenna [J]. Acta Electronica Sinica, 2018, 46(4): 146-152.
|
|
|
[9] |
马雪松, 赵寒涛, 朱明清 CVIRE-RFID室内定位算法[J]. 自动化技术与应用, 2017, 36 (12): 49- 53 MA Xue-song, ZHAO Han-tao, ZHU Ming-qing CVIRE-RFID indoor positioning algorithm[J]. Techniques of Automation and Applications, 2017, 36 (12): 49- 53
doi: 10.3969/j.issn.1003-7241.2017.12.012
|
|
|
[10] |
顾军华, 许鹏, 董瑶, 等 基于克里金插值的自适应VIRE室内定位算法研究[J]. 计算机工程与应用, 2018, 54 (12): 100- 104 GU Jun-hua, XU Peng, DONG Yao, et al Research on adaptive VIRE indoor positioning algorithm based on Kriging interpolation[J]. Computer Engineering and Applications, 2018, 54 (12): 100- 104
doi: 10.3778/j.issn.1002-8331.1709-0242
|
|
|
[11] |
SHANGGUAN L, YANG Z, LIU A X, et al STPP: spatial-temporal phase profiling-based method for relative RFID tag localization[J]. IEEE/ACM Transactions on Networking, 2016, 25 (1): 596- 609
|
|
|
[12] |
RUAN W J, SHENG Q Z, YAO L, et al. Device-free indoor localization and tracking through human-object interactions [C]// 2016 IEEE 17th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). Coimbra: IEEE, 2016.
|
|
|
[13] |
LIU M, WANG H, YANG Y, et al RFID 3-D indoor localization for tag and tag-free target based on interference[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68 (10): 3718- 3732
|
|
|
[14] |
XIAO F, WANG Z, YE N, et al One more tag enables fine-grained RFID localization and tracking[J]. IEEE/ACM Transactions on Networking, 2017, 26 (1): 161- 174
|
|
|
[15] |
HAN J, QIAN C, WANG X, et al Twins: device-free object tracking using passive tags[J]. IEEE/ACM Transactions on Networking, 2015, 24 (3): 1605- 1617
|
|
|
[16] |
MA L, LIU M, WANG H, et al WallSense: device-free indoor localization using wall-mounted UHF RFID tags[J]. Sensors, 2018, 19 (1): 68- 83
doi: 10.3390/s19010068
|
|
|
[17] |
丁治国. RFID关键技术研究与实现[D]. 合肥: 中国科学技术大学, 2009. DING Zhi-guo. Research and implementation of RFID key technology [D]. Hefei: University of Science and Technology of China, 2009.
|
|
|
[18] |
谢飞, 张忠臣, 张鹏, 等 多径效应对测向误差的影响[J]. 电子测量技术, 2010, 33 (1): 29- 31 XIE Fei, ZHANG Zhong-cheng, ZHANG Peng, et al The influence of multipath effect on direction finding error[J]. Electronic Measurement Technology, 2010, 33 (1): 29- 31
doi: 10.3969/j.issn.1002-7300.2010.01.009
|
|
|
[19] |
徐潇潇, 谢林柏 位置指纹算法关键参数的提取[J]. 江南大学学报:自然科学版, 2015, 14 (3): 264- 268 XU Xiao-xiao, XIE Lin-bai Extraction of key parameters of location fingerprint algorithm[J]. Journal of Clothing Research, 2015, 14 (3): 264- 268
|
|
|
[20] |
BERTHOUZE L, TIJSSELING A A neural model for context-dependent sequence learning[J]. Neural Processing Letters, 2006, 23 (1): 27- 45
doi: 10.1007/s11063-005-2838-x
|
|
|
[21] |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28 (10): 2222- 2232
|
|
|
[22] |
FU R, ZHANG Z, LI L, et al. Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction [C]// 31st Youth Academic Annual Conference of Chinese-Association-of-Automation (YAC). Wuhan: IEEE, 2016: 324-328.
|
|
|
[23] |
KONG W C, DONG Z Y, JIA Y W, et al Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transcations on Smart Grid, 2019, 10 (1): 841- 851
doi: 10.1109/TSG.2017.2753802
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|