1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Zhejiang Hydrology New Technology Development Company, Hangzhou 310009, China
Making use of the historical daily water supply data of four water plants in Yiwu city, a new water supply prediction model based on long short term memory (LSTM) neural network improved by integrated learning algorithm was proposed, in order to effectively resolve the problems of low accuracy and insufficient generalization ability of the daily water supply prediction. In the model, a historical daily water supply after pre-processing by Pauta criterion was taken as the data input, the LSTM neural network with long-term temporal information memory was applied as the weak predictor of integrated learning, the grid search method was utilized for network hyperparameter tuning, and the AdaBoost integrated learning algorithm was used to weight the combination of the weak predictors to obtain the strong predictor. Results show that the improved LSTM neural network based on integrated learning algorithm has the highest Nash efficiency coefficient (NSE) with the lowest root mean square error (RMSE) and mean absolute error (MAE), the best fitting effect on the change trend and the peak value of daily water supply data, compared with the random forest (RF), AdaBoost and LSTM neural network. The time series prediction accuracy of the improved LSTM water supply forecasting model is significantly improved, with good generalization ability and stable prediction performance. The results can provide an important reference for the rational allocation of urban water resources planning and integrated intelligent water supply scheduling.
Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG. Daily water supply prediction method based on integrated learning and deep learning. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1120-1127.
Fig.2Autocorrelation coefficients of daily water supply series with different delay periods
Td/d
NSE
MAE/(m3·d?1)
RMSE/(m3·d?1)
2
0.919
1 136
1 601
3
0.917
1 146
1 616
4
0.924
1 242
1 548
5
0.918
1 154
1 607
6
0.924
1 241
1 550
7
0.927
1 104
1 520
8
0.921
1 233
1 581
9
0.921
1 168
1 581
10
0.919
1 207
1 605
Tab.1Performance comparison of LSTM neural network models with different input days
NRF
NSE
MAE/( m3·d?1)
RMSE/( m3·d?1)
10
0.937
864
1 408
20
0.938
879
1 405
30
0.938
830
1 395
40
0.937
848
1 416
50
0.938
861
1 402
60
0.941
841
1 367
70
0.944
819
1 335
80
0.938
873
1 402
90
0.939
853
1 389
100
0.939
837
1 390
Tab.2Performance comparison of random forest models with different number of decision trees
DRF
NSE
MAE/( m3·d?1)
RMSE/( m3·d?1)
2
0.872
1 382
2 009
3
0.933
874
1 455
4
0.939
853
1 390
5
0.932
915
1 469
6
0.923
928
1 559
7
0.921
971
1 577
8
0.896
1 134
1 816
9
0.881
1 193
1 937
10
0.860
1 317
2 107
11
0.824
1 471
2 363
Tab.3Performance comparison of random forest models with different decision tree depths
NAB
NSE
MAE/( m3·d?1)
RMSE/( m3·d?1)
10
0.846
1 432
2 207
20
0.793
1 701
2 560
30
0.860
1 404
2 102
40
0.802
1 796
2 503
50
0.783
1 783
2 620
60
0.844
1 406
2 224
70
0.822
1 659
2 375
80
0.822
1 782
2 373
90
0.829
1 571
2 324
100
0.814
1 534
2 424
Tab.4Performance comparison of AdaBoost models with different number of decision trees
NBS
NSE
MAE/( m3·d?1)
RMSE/( m3·d?1)
16
0.924
1 115
1 548
32
0.927
1 335
1 646
64
0.917
1 170
1 617
128
0.896
1 376
1 811
256
0.761
1 980
2 752
Tab.5Performance comparison of improved LSTM models with different batch sizes
N
NSE
第1次
第2次
第3次
第4次
第5次
平均值
2
0.897
0.898
0.894
0.883
0.896
0.894
3
0.852
0.853
0.849
0.839
0.851
0.849
4
0.839
0.842
0.835
0.829
0.840
0.837
5
0.831
0.836
0.831
0.824
0.836
0.832
6
0.830
0.833
0.830
0.822
0.833
0.830
7
0.830
0.832
0.828
0.822
0.830
0.828
8
0.796
0.824
0.815
0.826
0.793
0.811
9
0.772
0.827
0.786
0.810
0.793
0.798
10
0.775
0.810
0.790
0.811
0.779
0.793
Tab.6Performance comparison of improved LSTM models with different number of weak predictors
Fig.3Curves of daily water supply prediction results for different water supply forecasting models at four water plants
方法
赤岸水厂
大陈水厂
佛堂水厂
中心水厂
NSE
MAE/ (m3·d?1)
RMSE/ (m3·d?1)
NSE
MAE/ (m3·d?1)
RMSE/ (m3·d?1)
NSE
MAE/ (m3·d?1)
RMSE/ (m3·d?1)
NSE
MAE/ (m3·d?1)
RMSE/ (m3·d?1)
RF
0.852
171.5
239.1
0.943
499.5
674.0
0.897
1 205.1
1 812.2
0.894
1 122.7
1 827.5
AdaBoost
0.844
187.8
245.2
0.892
791.9
929.8
0.816
1 587.6
2 420.7
0.836
1 611.3
2 275.0
LSTM
0.900
158.3
196.1
0.961
475.9
557.7
0.913
1 190.0
1 662.0
0.905
1 258.9
1 733.6
改进LSTM
0.929
118.4
165.2
0.971
402.2
484.8
0.925
1 131.8
1 545.2
0.924
1 113.9
1 547.2
Tab.7Performance comparison of different water supply forecasting models for four water plants
[1]
李原园, 曹建廷, 黄火键, 等 国际上水资源综合管理进展[J]. 水科学进展, 2018, 29 (1): 127- 137 LI Yuan-yuan, CAO Jian-ting, HUANG Huo-jian, et al International progress in integrated water resources management[J]. Advances in Water Science, 2018, 29 (1): 127- 137
[2]
姜彤, 孙赫敏, 李修仓, 等 气候变化对水文循环的影响[J]. 气象, 2020, 46 (3): 289- 300 JIANG Tong, SUN He-min, LI Xiu-cang, et al Impacts of climate change on water cycle[J]. Meteorological Monthly, 2020, 46 (3): 289- 300
[3]
张建云, 王国庆, 金君良, 等 1956—2018 年中国江河径流演变及其变化特征[J]. 水科学进展, 2020, 31 (2): 153- 161 ZHANG Jian-yun, WANG Guo-qing, JIN Jun-liang, et al Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020, 31 (2): 153- 161
[4]
PACCHIN E, GAGLIARDI F, ALVISI S, et al A comparison of short-term water demand forecasting models[J]. Water Resources Management, 2019, 33: 1481- 1497
doi: 10.1007/s11269-019-02213-y
[5]
BRENTAN B M, LUVIZOTTO E, HERRERA M, et al Hybrid regression model for near real-time urban water demand forecasting[J]. Journal of Computational and Applied Mathematics, 2017, 309: 532- 541
doi: 10.1016/j.cam.2016.02.009
[6]
NARAYANAN L K, SANKARANARAYANAN S, RODRIGUES J J P C, et al Water demand forecasting using deep learning in IoT enabled water distribution network[J]. International Journal of Computers Communications and Control, 2020, 15 (6): 3977
[7]
SHUANG Q, ZHAO R T Water demand prediction using machine learning methods: a case study of the Beijing–Tianjin–Hebei region in China[J]. Water, 2021, 13 (3): 310
doi: 10.3390/w13030310
[8]
GUO G, LIU S, WU Y, et al Short-term water demand forecast based on deep learning method[J]. Journal of Water Resources Planning and Management, 2018, 144 (12): 04018076
doi: 10.1061/(ASCE)WR.1943-5452.0000992
[9]
XENOCHRISTOU M, HUTTON C, HOFMAN J, et al Short-term forecasting of household water demand in the UK using an interpretable machine learning approach[J]. Journal of Water Resources Planning and Management, 2021, 147 (4): 04021004
doi: 10.1061/(ASCE)WR.1943-5452.0001325
[10]
HUANG H, ZHANG Z, SONG F An ensemble-learning-based method for short-term water demand forecasting[J]. Water Resources Management, 2021, 35 (6): 1757- 1773
doi: 10.1007/s11269-021-02808-4
[11]
王忠红, 温进化 义乌市水资源开发利用对策研究[J]. 浙江水利科技, 2016, 44 (4): 23- 25 WANG Zhong-hong, WEN Jin-hua Research on countermeasures for water resources development and utilization in Yiwu City[J]. Zhejiang Hydrotechnics, 2016, 44 (4): 23- 25
鲍倩倩, 谢磊, 周杨军, 等 水资源紧缺约束下义乌市人口承载力研究[J]. 水利规划与设计, 2020, (9): 47- 51 BAO Qian-qian, XIE Lei, ZHOU Yang-jun, et al Study on the population carrying capacity of Yiwu City under water scarcity constraint[J]. Water Resources Planning and Design, 2020, (9): 47- 51
[15]
BREIMAN L Bagging predictors[J]. Machine Learning, 1996, 24: 123- 140
[16]
HO T K The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (8): 832- 844
doi: 10.1109/34.709601
[17]
FREUND Y Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121 (2): 256- 285
[18]
郭冠呈, 刘书明, 李俊禹, 等 基于双向长短时神经网络的水量预测方法研究[J]. 给水排水, 2018, 44 (3): 123- 126 GUO Guan-cheng, LIU Shu-ming, LI Jun-yu, et al Study on water quantity prediction method based on bidirectional long and short time neural network[J]. Water and Wastewater Engineering, 2018, 44 (3): 123- 126
[19]
KAO I F, ZHOU Y, CHANG L C, et al Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting[J]. Journal of Hydrology, 2020, 583: 124631
doi: 10.1016/j.jhydrol.2020.124631
[20]
NI L, WANG D, SINGH V P, et al Streamflow and rainfall forecasting by two long short-term memory-based models[J]. Journal of Hydrology, 2020, 583: 124296
doi: 10.1016/j.jhydrol.2019.124296
[21]
DU B, ZHOU Q, GUO J, et al Deep learning with long short-term memory neural networks combining wavelet transform and principal component analysis for daily urban water demand forecasting[J]. Expert Systems with Applications, 2021, 171: 114571
doi: 10.1016/j.eswa.2021.114571
Jun-chi MA,Xiao-xin DI,Zong-tao DUAN,Lei TANG. Survey on program representation learning[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 155-169.